↓ Skip to main content

Dove Medical Press

Dual-degradable disulfide-containing PEI–Pluronic/DNA polyplexes: transfection efficiency and balancing protection and DNA release

Overview of attention for article published in International Journal of Nanomedicine, September 2013
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age

Mentioned by

twitter
3 X users

Citations

dimensions_citation
26 Dimensions

Readers on

mendeley
28 Mendeley
Title
Dual-degradable disulfide-containing PEI–Pluronic/DNA polyplexes: transfection efficiency and balancing protection and DNA release
Published in
International Journal of Nanomedicine, September 2013
DOI 10.2147/ijn.s49595
Pubmed ID
Authors

Lifen Zhang, Zhenzhen Chen, Yanfeng Li

Abstract

Polymeric gene-delivery vectors to achieve lack of toxicity and a balance between protection and DNA release remains a formidable challenge. Incorporating intracellular environment-responsive degradable bonds is an appreciable step toward developing safer transfection agents. In this study, novel, dual-degradable polycation copolymers (Pluronic-diacrylate [PA]-polyethyleneimine [PEI]-SS) were synthesized through the addition of low molecular weight (800 Da) PEI cross-linked with SS (PEI-SS) to PA. Three PA-PEI-SS copolymers (PA-PEI-SS1, 2, and 3) with different PEI-SS to Pluronic molar ratios were investigated and found to strongly condense plasmid DNA into positively charged nanoparticles with an average particle size of approximately 200 nm and to possess higher stability against DNase I digestion and sodium heparin. Disulfide and ester bonds of the copolymers were susceptible to intracellular redox conditions. In vitro experiments demonstrated that the PA-PEI-SS copolymers had significantly lower cytotoxicity and higher transfection efficiency in both BGC-823 and 293T cell lines than the controls of degradable PEI-SS and nondegradable 25 kDa PEI. Transfection activity was influenced by the PEI-SS content in the polymers and PA-PEI-SS1 showed the highest efficiency of the three copolymers. These studies suggest that these dual-degradable copolymers could be used as potential biocompatible gene delivery carriers.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 28 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 1 4%
Unknown 27 96%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 8 29%
Student > Ph. D. Student 7 25%
Researcher 4 14%
Student > Master 4 14%
Student > Doctoral Student 1 4%
Other 0 0%
Unknown 4 14%
Readers by discipline Count As %
Pharmacology, Toxicology and Pharmaceutical Science 8 29%
Agricultural and Biological Sciences 5 18%
Chemistry 3 11%
Medicine and Dentistry 3 11%
Biochemistry, Genetics and Molecular Biology 1 4%
Other 1 4%
Unknown 7 25%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 30 September 2013.
All research outputs
#16,722,190
of 25,374,917 outputs
Outputs from International Journal of Nanomedicine
#2,088
of 4,123 outputs
Outputs of similar age
#129,589
of 212,478 outputs
Outputs of similar age from International Journal of Nanomedicine
#64
of 104 outputs
Altmetric has tracked 25,374,917 research outputs across all sources so far. This one is in the 32nd percentile – i.e., 32% of other outputs scored the same or lower than it.
So far Altmetric has tracked 4,123 research outputs from this source. They receive a mean Attention Score of 4.7. This one is in the 40th percentile – i.e., 40% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 212,478 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 37th percentile – i.e., 37% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 104 others from the same source and published within six weeks on either side of this one. This one is in the 22nd percentile – i.e., 22% of its contemporaries scored the same or lower than it.