↓ Skip to main content

Dove Medical Press

Article Metrics

Different patterns of nuclear and mitochondrial penetration by the G3 PAMAM dendrimer and its biotin–pyridoxal bioconjugate BC-PAMAM in normal and cancer cells in vitro

Overview of attention for article published in International Journal of Nanomedicine, September 2015
Altmetric Badge

About this Attention Score

  • Above-average Attention Score compared to outputs of the same age (55th percentile)
  • Above-average Attention Score compared to outputs of the same age and source (58th percentile)

Mentioned by

twitter
4 tweeters

Citations

dimensions_citation
10 Dimensions

Readers on

mendeley
16 Mendeley
Title
Different patterns of nuclear and mitochondrial penetration by the G3 PAMAM dendrimer and its biotin–pyridoxal bioconjugate BC-PAMAM in normal and cancer cells in vitro
Published in
International Journal of Nanomedicine, September 2015
DOI 10.2147/ijn.s87307
Pubmed ID
Authors

Łukasz Uram, Magdalena Szuster, Aleksandra Filipowicz, Krzysztof Gargasz, Stanisław Wołowiec, Elżbieta Wałajtys-Rode

Abstract

The intracellular localization and colocalization of a fluorescently labeled G3 amine-terminated cationic polyamidoamine (PAMAM) dendrimer and its biotin-pyridoxal (BC-PAMAM) bioconjugate were investigated in a concentration-dependent manner in normal human fibroblast (BJ) and squamous epithelial carcinoma (SCC-15) cell lines. After 24 hours treatment, both cell lines revealed different patterns of intracellular dendrimer accumulation depending on their cytotoxic effects. Cancer cells exhibited much higher (20-fold) tolerance for native PAMAM treatment than fibroblasts, whereas BC-PAMAM was significantly toxic only for fibroblasts at 50 µM concentration. Fibroblasts accumulated the native and bioconjugated dendrimers in a concentration-dependent manner at nontoxic range of concentration, with significantly lower bioconjugate loading. After reaching the cytotoxicity level, fluorescein isothiocyanate-PAMAM accumulation remains at high, comparable level. In cancer cells, native PAMAM loading at higher, but not cytotoxic concentrations, was kept at constant level with a sharp increase at toxic concentration. Mander's coefficient calculated for fibroblasts and cancer cells confirmed more efficient native PAMAM penetration as compared to BC-PAMAM. Significant differences in nuclear dendrimer penetration were observed for both cell lines. In cancer cells, PAMAM signals amounted to ~25%-35% of the total nuclei area at all investigated concentrations, with lower level (15%-25%) observed for BC-PAMAM. In fibroblasts, the dendrimer nuclear signal amounted to 15% at nontoxic and up to 70% at toxic concentrations, whereas BC-PAMAM remained at a lower concentration-dependent level (0.3%-20%). Mitochondrial localization of PAMAM and BC-PAMAM revealed similar patterns in both cell lines, depending on the extracellular dendrimer concentration, and presented significantly lower signals from BC-PAMAM, which correlated well with the cytotoxicity.

Twitter Demographics

The data shown below were collected from the profiles of 4 tweeters who shared this research output. Click here to find out more about how the information was compiled.

Mendeley readers

The data shown below were compiled from readership statistics for 16 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 16 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 4 25%
Student > Bachelor 3 19%
Student > Master 3 19%
Researcher 2 13%
Student > Doctoral Student 1 6%
Other 2 13%
Unknown 1 6%
Readers by discipline Count As %
Chemistry 4 25%
Medicine and Dentistry 3 19%
Neuroscience 3 19%
Pharmacology, Toxicology and Pharmaceutical Science 1 6%
Agricultural and Biological Sciences 1 6%
Other 2 13%
Unknown 2 13%

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 08 September 2015.
All research outputs
#2,491,833
of 6,310,269 outputs
Outputs from International Journal of Nanomedicine
#367
of 1,512 outputs
Outputs of similar age
#82,456
of 195,273 outputs
Outputs of similar age from International Journal of Nanomedicine
#42
of 146 outputs
Altmetric has tracked 6,310,269 research outputs across all sources so far. This one has received more attention than most of these and is in the 59th percentile.
So far Altmetric has tracked 1,512 research outputs from this source. They receive a mean Attention Score of 1.8. This one has gotten more attention than average, scoring higher than 70% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 195,273 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 55% of its contemporaries.
We're also able to compare this research output to 146 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 58% of its contemporaries.