↓ Skip to main content

Dove Medical Press

Functional divergence and convergence between the transcript network and gene network in lung adenocarcinoma

Overview of attention for article published in OncoTargets and therapy, January 2016
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Above-average Attention Score compared to outputs of the same age and source (57th percentile)

Mentioned by

twitter
3 X users

Citations

dimensions_citation
2 Dimensions

Readers on

mendeley
12 Mendeley
Title
Functional divergence and convergence between the transcript network and gene network in lung adenocarcinoma
Published in
OncoTargets and therapy, January 2016
DOI 10.2147/ott.s94897
Pubmed ID
Authors

Min-Kung Hsu, Chia-Lin Pan, Feng-Chi Chen

Abstract

Alternative RNA splicing is a critical regulatory mechanism during tumorigenesis. However, previous oncological studies mainly focused on the splicing of individual genes. Whether and how transcript isoforms are coordinated to affect cellular functions remain underexplored. Also of great interest is how the splicing regulome cooperates with the transcription regulome to facilitate tumorigenesis. The answers to these questions are of fundamental importance to cancer biology. Here, we report a comparative study between the transcript-based network (TN) and the gene-based network (GN) derived from the transcriptomes of paired tumor-normal tissues from 77 lung adenocarcinoma patients. We demonstrate that the two networks differ significantly from each other in terms of patient clustering and the number and functions of network modules. Interestingly, the majority (89.5%) of multi-transcript genes have their transcript isoforms distributed in at least two TN modules, suggesting regulatory and functional divergences between transcript isoforms. Furthermore, TN and GN modules share onlŷ50%-60% of their biological functions. TN thus appears to constitute a regulatory layer separate from GN. Nevertheless, our results indicate that functional convergence and divergence both occur between TN and GN, implying complex interactions between the two regulatory layers. Finally, we report that the expression profiles of module members in both TN and GN shift dramatically yet concordantly during tumorigenesis. The mechanisms underlying this coordinated shifting remain unclear yet are worth further explorations. We show that in lung adenocarcinoma, transcript isoforms per se are coordinately regulated to conduct biological functions not conveyed by the network of genes. However, the two networks may interact closely with each other by sharing the same or related biological functions. Unraveling the effects and mechanisms of such interactions will significantly advance our understanding of this deadly disease.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 12 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 12 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 7 58%
Professor 1 8%
Other 1 8%
Student > Master 1 8%
Professor > Associate Professor 1 8%
Other 0 0%
Unknown 1 8%
Readers by discipline Count As %
Agricultural and Biological Sciences 5 42%
Biochemistry, Genetics and Molecular Biology 2 17%
Engineering 2 17%
Computer Science 1 8%
Unknown 2 17%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 03 February 2016.
All research outputs
#15,740,207
of 25,374,647 outputs
Outputs from OncoTargets and therapy
#836
of 3,016 outputs
Outputs of similar age
#212,126
of 399,679 outputs
Outputs of similar age from OncoTargets and therapy
#35
of 85 outputs
Altmetric has tracked 25,374,647 research outputs across all sources so far. This one is in the 37th percentile – i.e., 37% of other outputs scored the same or lower than it.
So far Altmetric has tracked 3,016 research outputs from this source. They receive a mean Attention Score of 2.9. This one has gotten more attention than average, scoring higher than 70% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 399,679 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 45th percentile – i.e., 45% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 85 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 57% of its contemporaries.