↓ Skip to main content

Dove Medical Press

Development of TIMP1 magnetic nanoformulation for regulation of synaptic plasticity in HIV-1 infection

Overview of attention for article published in International Journal of Nanomedicine, August 2016
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Above-average Attention Score compared to outputs of the same age and source (60th percentile)

Mentioned by

twitter
3 X users

Citations

dimensions_citation
20 Dimensions

Readers on

mendeley
33 Mendeley
Title
Development of TIMP1 magnetic nanoformulation for regulation of synaptic plasticity in HIV-1 infection
Published in
International Journal of Nanomedicine, August 2016
DOI 10.2147/ijn.s108329
Pubmed ID
Authors

Venkata Subba Rao Atluri, Rahul Dev Jayant, Sudheesh Pilakka-Kanthikeel, Gabriella Garcia, Thangavel Samikkannu, Adriana Yndart, Ajeet Kaushik, Madhavan Nair

Abstract

Although the introduction of antiretroviral therapy has reduced the prevalence of severe forms of neurocognitive disorders, human immunodeficiency virus (HIV)-1-associated neurocognitive disorders were observed in 50% of HIV-infected patients globally. The blood-brain barrier is known to be impermeable to most of antiretroviral drugs. Successful delivery of antiretroviral drugs into the brain may induce an inflammatory response, which may further induce neurotoxicity. Therefore, alternate options to antiretroviral drugs for decreasing the HIV infection and neurotoxicity may help in reducing neurocognitive impairments observed in HIV-infected patients. In this study, we explored the role of magnetic nanoparticle (MNP)-bound tissue inhibitor of metalloproteinase-1 (TIMP1) protein in reducing HIV infection levels, oxidative stress, and recovering spine density in HIV-infected SK-N-MC neuroblastoma cells. We did not observe any neuronal cytotoxicity with either the free TIMP1 or MNP-bound TIMP1 used in our study. We observed significantly reduced HIV infection in both solution phase and in MNP-bound TIMP1-exposed neuronal cells. Furthermore, we also observed significantly reduced reactive oxygen species production in both the test groups compared to the neuronal cells infected with HIV alone. To observe the effect of both soluble-phase TIMP1 and MNP-bound TIMP1 on spine density in HIV-infected neuronal cells, confocal microscopy was used. We observed significant recovery of spine density in both the test groups when compared to the cells infected with HIV alone, indicting the neuroprotective effect of TIMP1. Therefore, our results suggest that the MNP-bound TIMP1 delivery method across the blood-brain barrier can be used for reducing HIV infectivity in brain tissue and neuronal toxicity in HIV-infected patients.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 33 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 33 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 6 18%
Student > Master 5 15%
Researcher 5 15%
Professor > Associate Professor 3 9%
Student > Bachelor 2 6%
Other 2 6%
Unknown 10 30%
Readers by discipline Count As %
Pharmacology, Toxicology and Pharmaceutical Science 4 12%
Agricultural and Biological Sciences 3 9%
Medicine and Dentistry 3 9%
Immunology and Microbiology 3 9%
Biochemistry, Genetics and Molecular Biology 2 6%
Other 3 9%
Unknown 15 45%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 14 September 2016.
All research outputs
#15,168,964
of 25,373,627 outputs
Outputs from International Journal of Nanomedicine
#1,664
of 4,123 outputs
Outputs of similar age
#215,642
of 381,036 outputs
Outputs of similar age from International Journal of Nanomedicine
#46
of 127 outputs
Altmetric has tracked 25,373,627 research outputs across all sources so far. This one is in the 38th percentile – i.e., 38% of other outputs scored the same or lower than it.
So far Altmetric has tracked 4,123 research outputs from this source. They receive a mean Attention Score of 4.7. This one has gotten more attention than average, scoring higher than 57% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 381,036 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 41st percentile – i.e., 41% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 127 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 60% of its contemporaries.