↓ Skip to main content

Dove Medical Press

Iron oxide nanoparticles modulate lipopolysaccharide-induced inflammatory responses in primary human monocytes

Overview of attention for article published in International Journal of Nanomedicine, September 2016
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age

Mentioned by

twitter
3 X users

Citations

dimensions_citation
38 Dimensions

Readers on

mendeley
43 Mendeley
Title
Iron oxide nanoparticles modulate lipopolysaccharide-induced inflammatory responses in primary human monocytes
Published in
International Journal of Nanomedicine, September 2016
DOI 10.2147/ijn.s113425
Pubmed ID
Authors

Susann Grosse, Jørgen Stenvik, Asbjørn M Nilsen

Abstract

Co-stimulation of the immune system to more than one agent concomitantly is very common in real life, and considering the increasing use of engineered nanoparticles and nanomaterials, it is highly relevant to assess the ability of these materials to modulate key innate immune responses, which has not yet been studied in detail. We investigated the immunomodulatory effects of 10 nm and 30 nm iron oxide nanoparticles (IONPs) on primary human monocytes in the presence and absence of Toll-like receptor 4 agonist lipopolysaccharide (LPS). Prior to the cell studies, we characterized the physicochemical properties of the nanoparticles in cell culture medium and ensured that the nanoparticles were free from biological contamination. Cellular uptake of the IONPs in monocytes was assessed using transmission electron microscopy. Using enzyme-linked immunosorbent assay, we found that the IONPs per se did not induce the production of proinflammatory cytokines tumor necrosis factor-α, interleukin-6, and interleukin-1β. However, the IONPs had the ability to suppress LPS-induced nuclear factor kappa B activation and production of proinflammatory cytokines in primary human monocytes in an LPS and a particle dose-dependent manner. Using confocal microscopy and fluorescently labeled LPS, we showed that the effects correlated with impaired LPS internalization by monocytes in the presence of IONPs, which could be partly explained by LPS adsorption onto the nanoparticle surface. Additionally, the results from particle pretreatment experiments indicate that other cellular mechanisms might also play a role in the observed effects, which warrants further studies to elucidate the additional mechanisms underlying the capacity of IONPs to alter the reactivity of monocytes to LPS and to mount an appropriate cellular response.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 43 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Norway 1 2%
Unknown 42 98%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 10 23%
Student > Master 10 23%
Researcher 7 16%
Student > Bachelor 3 7%
Lecturer 1 2%
Other 4 9%
Unknown 8 19%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 10 23%
Agricultural and Biological Sciences 8 19%
Chemistry 4 9%
Neuroscience 3 7%
Pharmacology, Toxicology and Pharmaceutical Science 2 5%
Other 6 14%
Unknown 10 23%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 14 September 2016.
All research outputs
#16,721,208
of 25,373,627 outputs
Outputs from International Journal of Nanomedicine
#2,088
of 4,123 outputs
Outputs of similar age
#218,482
of 348,369 outputs
Outputs of similar age from International Journal of Nanomedicine
#72
of 128 outputs
Altmetric has tracked 25,373,627 research outputs across all sources so far. This one is in the 32nd percentile – i.e., 32% of other outputs scored the same or lower than it.
So far Altmetric has tracked 4,123 research outputs from this source. They receive a mean Attention Score of 4.7. This one is in the 40th percentile – i.e., 40% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 348,369 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 34th percentile – i.e., 34% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 128 others from the same source and published within six weeks on either side of this one. This one is in the 22nd percentile – i.e., 22% of its contemporaries scored the same or lower than it.