↓ Skip to main content

Dove Medical Press

Comparative study of proteasome inhibitory, synergistic antibacterial, synergistic anticandidal, and antioxidant activities of gold nanoparticles biosynthesized using fruit waste materials

Overview of attention for article published in International Journal of Nanomedicine, September 2016
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age

Mentioned by

twitter
3 X users

Readers on

mendeley
52 Mendeley
Title
Comparative study of proteasome inhibitory, synergistic antibacterial, synergistic anticandidal, and antioxidant activities of gold nanoparticles biosynthesized using fruit waste materials
Published in
International Journal of Nanomedicine, September 2016
DOI 10.2147/ijn.s108920
Pubmed ID
Authors

Jayanta Kumar Patra, Kwang-Hyun Baek

Abstract

The aim of this study was to compare the biological synthesis of gold nanoparticles (AuNPs) generated using the aqueous extracts of outer oriental melon peel (OMP) and peach. The synthesized OMP-AuNPs and peach extract (PE)-AuNPs were characterized by ultraviolet-visible spectroscopy, field emission scanning electron microscopy, energy dispersive X-ray analysis, X-ray powder diffraction, Fourier transform infrared spectroscopy, and thermogravimetric analysis. The surface plasmon resonance spectra were obtained at 545 nm and 540 nm for OMP-AuNPs and PE-AuNPs, respectively. The estimated absolute crystallite size of the synthesized AuNPs was calculated to be 78.11 nm for OMP-AuNPs and 39.90 nm for PE-AuNPs based on the Scherer equation of the X-ray powder diffraction peaks. Fourier transform infrared spectroscopy results revealed the involvement of bioactive compounds present in OMP and peach extracts in the synthesis and stabilization of synthesized AuNPs. Both the OMP-AuNPs and PE-AuNPs showed a strong antibacterial synergistic activity when combined with kanamycin (9.38-20.45 mm inhibition zones) and rifampicin (9.52-25.23 mm inhibition zones), and they also exerted a strong synergistic anticandidal activity (10.09-15.47 mm inhibition zones) when combined with amphotericin B against five pathogenic Candida species. Both the OMP-AuNPs and PE-AuNPs exhibited a strong antioxidant potential in terms of 1,1-diphenyl-2-picrylhydraxyl radical scavenging, nitric oxide scavenging, 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) radical scavenging, and a reducing power, along with a strong proteasome inhibitory potential that could be useful in cancer drug delivery and cancer treatments. The PE-AuNPs showed comparatively higher activity than OMP-AuNPs, which could be attributed to the presence of rich bioactive compounds in the PE that acted as reducing and capping agents in the synthesis of PE-AuNPs. Overall, the results of the current investigation highlighted a novel green technology for the synthesis of AuNPs using food waste materials and their potential applications in the biomedical, pharmaceutical, and cosmetic industries.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 52 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 52 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 9 17%
Student > Master 7 13%
Student > Ph. D. Student 7 13%
Student > Doctoral Student 5 10%
Lecturer 5 10%
Other 7 13%
Unknown 12 23%
Readers by discipline Count As %
Pharmacology, Toxicology and Pharmaceutical Science 6 12%
Chemistry 6 12%
Medicine and Dentistry 6 12%
Biochemistry, Genetics and Molecular Biology 4 8%
Agricultural and Biological Sciences 4 8%
Other 10 19%
Unknown 16 31%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 15 September 2016.
All research outputs
#16,722,190
of 25,374,647 outputs
Outputs from International Journal of Nanomedicine
#2,087
of 4,123 outputs
Outputs of similar age
#218,483
of 348,376 outputs
Outputs of similar age from International Journal of Nanomedicine
#72
of 128 outputs
Altmetric has tracked 25,374,647 research outputs across all sources so far. This one is in the 32nd percentile – i.e., 32% of other outputs scored the same or lower than it.
So far Altmetric has tracked 4,123 research outputs from this source. They receive a mean Attention Score of 4.7. This one is in the 40th percentile – i.e., 40% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 348,376 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 34th percentile – i.e., 34% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 128 others from the same source and published within six weeks on either side of this one. This one is in the 22nd percentile – i.e., 22% of its contemporaries scored the same or lower than it.