↓ Skip to main content

Dove Medical Press

Do nanoparticles provide a new opportunity for diagnosis of distal airspace disease?

Overview of attention for article published in International Journal of Nanomedicine, December 2016
Altmetric Badge

Mentioned by

video
1 YouTube creator

Citations

dimensions_citation
22 Dimensions

Readers on

mendeley
33 Mendeley
Title
Do nanoparticles provide a new opportunity for diagnosis of distal airspace disease?
Published in
International Journal of Nanomedicine, December 2016
DOI 10.2147/ijn.s121369
Pubmed ID
Authors

Jakob Löndahl, Jonas KF Jakobsson, David M Broday, H Laura Aaltonen, Per Wollmer

Abstract

There is a need for efficient techniques to assess abnormalities in the peripheral regions of the lungs, for example, for diagnosis of pulmonary emphysema. Considerable scientific efforts have been directed toward measuring lung morphology by studying recovery of inhaled micron-sized aerosol particles (0.4-1.5 µm). In contrast, it is suggested that the recovery of inhaled airborne nanoparticles may be more useful for diagnosis. The objective of this work is to provide a theoretical background for the use of nanoparticles in measuring lung morphology and to assess their applicability based on a review of the literature. Using nanoparticles for studying distal airspace dimensions is shown to have several advantages over other aerosol-based methods. 1) Nanoparticles deposit almost exclusively by diffusion, which allows a simpler breathing maneuver with minor artifacts from particle losses in the oropharyngeal and upper airways. 2) A higher breathing flow rate can be utilized, making it possible to rapidly inhale from residual volume to total lung capacity (TLC), thereby eliminating the need to determine the TLC before measurement. 3) Recent studies indicate better penetration of nanoparticles than micron-sized particles into poorly ventilated and diseased regions of the lungs; thus, a stronger signal from the abnormal parts is expected. 4) Changes in airspace dimensions have a larger impact on the recovery of nanoparticles. Compared to current diagnostic techniques with high specificity for morphometric changes of the lungs, computed tomography and magnetic resonance imaging with hyperpolarized gases, an aerosol-based method is likely to be less time consuming, considerably cheaper, simpler to use, and easier to interpret (providing a single value rather than an image that has to be analyzed). Compared to diagnosis by carbon monoxide (DL,CO), the uptake of nanoparticles in the lung is not affected by blood flow, hemoglobin concentration or alterations of the alveolar membranes, but relies only on lung morphology.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 33 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 33 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 5 15%
Student > Ph. D. Student 4 12%
Professor > Associate Professor 3 9%
Professor 2 6%
Other 1 3%
Other 3 9%
Unknown 15 45%
Readers by discipline Count As %
Medicine and Dentistry 8 24%
Engineering 3 9%
Agricultural and Biological Sciences 2 6%
Psychology 1 3%
Environmental Science 1 3%
Other 2 6%
Unknown 16 48%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 19 December 2016.
All research outputs
#22,759,452
of 25,374,647 outputs
Outputs from International Journal of Nanomedicine
#3,598
of 4,123 outputs
Outputs of similar age
#356,624
of 416,449 outputs
Outputs of similar age from International Journal of Nanomedicine
#68
of 75 outputs
Altmetric has tracked 25,374,647 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 4,123 research outputs from this source. They receive a mean Attention Score of 4.7. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 416,449 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 75 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.