↓ Skip to main content

Dove Medical Press

In vitro proliferation and osteogenic differentiation of mesenchymal stem cells on nanoporous alumina

Overview of attention for article published in International Journal of Nanomedicine, July 2013
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Above-average Attention Score compared to outputs of the same age and source (51st percentile)

Mentioned by

twitter
4 X users

Readers on

mendeley
51 Mendeley
Title
In vitro proliferation and osteogenic differentiation of mesenchymal stem cells on nanoporous alumina
Published in
International Journal of Nanomedicine, July 2013
DOI 10.2147/ijn.s44885
Pubmed ID
Authors

Yuanhui Song, Yang Ju, Guanbin Song, Yasuyuki Morita

Abstract

Cell adhesion, migration, and proliferation are significantly affected by the surface topography of the substrates on which the cells are cultured. Alumina is one of the most popular implant materials used in orthopedics, but few data are available concerning the cellular responses of mesenchymal stem cells (MSCs) grown on nanoporous structures. MSCs were cultured on smooth alumina substrates and nanoporous alumina substrates to investigate the interaction between surface topographies of nanoporous alumina and cellular behavior. Nanoporous alumina substrates with pore sizes of 20 nm and 100 nm were used to evaluate the effect of pore size on MSCs as measured by proliferation, morphology, expression of integrin β1, and osteogenic differentiation. An MTT assay was used to measure cell viability of MSCs on different substrates, and determined that cell viability decreased with increasing pore size. Scanning electron microscopy was used to investigate the effect of pore size on cell morphology. Extremely elongated cells and prominent cell membrane protrusions were observed in cells cultured on alumina with the larger pore size. The expression of integrin β1 was enhanced in MSCs cultured on porous alumina, revealing that porous alumina substrates were more favorable for cell growth than smooth alumina substrates. Higher levels of osteoblastic differentiation markers such as alkaline phosphatase, osteocalcin, and mineralization were detected in cells cultured on alumina with 100 nm pores compared with cells cultured on alumina with either 20 nm pores or smooth alumina. This work demonstrates that cellular behavior is affected by variation in pore size, providing new insight into the potential application of this novel biocompatible material for the developing field of tissue engineering.

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 51 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United Kingdom 2 4%
Malaysia 1 2%
Portugal 1 2%
Unknown 47 92%

Demographic breakdown

Readers by professional status Count As %
Student > Master 12 24%
Researcher 6 12%
Student > Bachelor 5 10%
Student > Ph. D. Student 5 10%
Other 3 6%
Other 8 16%
Unknown 12 24%
Readers by discipline Count As %
Engineering 10 20%
Agricultural and Biological Sciences 8 16%
Medicine and Dentistry 5 10%
Biochemistry, Genetics and Molecular Biology 3 6%
Materials Science 3 6%
Other 9 18%
Unknown 13 25%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 03 October 2013.
All research outputs
#15,879,822
of 25,584,565 outputs
Outputs from International Journal of Nanomedicine
#1,779
of 4,077 outputs
Outputs of similar age
#117,973
of 207,028 outputs
Outputs of similar age from International Journal of Nanomedicine
#41
of 85 outputs
Altmetric has tracked 25,584,565 research outputs across all sources so far. This one is in the 36th percentile – i.e., 36% of other outputs scored the same or lower than it.
So far Altmetric has tracked 4,077 research outputs from this source. They receive a mean Attention Score of 4.8. This one has gotten more attention than average, scoring higher than 53% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 207,028 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 42nd percentile – i.e., 42% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 85 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 51% of its contemporaries.