↓ Skip to main content

Dove Medical Press

Lipase degradation of plasticized polyvinyl chloride endotracheal tube surfaces to create nanoscale features

Overview of attention for article published in International Journal of Nanomedicine, March 2017
Altmetric Badge

Mentioned by

twitter
1 X user
video
1 YouTube creator

Citations

dimensions_citation
11 Dimensions

Readers on

mendeley
19 Mendeley
Title
Lipase degradation of plasticized polyvinyl chloride endotracheal tube surfaces to create nanoscale features
Published in
International Journal of Nanomedicine, March 2017
DOI 10.2147/ijn.s130608
Pubmed ID
Authors

Mary C Machado, Thomas J Webster

Abstract

Polyvinyl chloride (PVC) endotracheal tubes (ETTs) nanoetched with a fungal lipase have been shown to reduce bacterial growth and biofilm formation and could be an inexpensive solution to the complex problem of ventilator-associated pneumonia (VAP). Although bacterial growth and colonization on these nanoetched materials have been well characterized, little is known about the mechanism by which the fungal lipase degrades the PVC and, thus, alters its properties to minimize bacteria functions. This study used X-ray photoelectron spectroscopy (XPS) and attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) to better describe the surface chemistry of both unetched and lipase nanoetched PVC ETT. ATR-FTIR analysis of the unetched and treated surfaces showed a similar presence of a plasticizer. This was confirmed by XPS analysis, which showed an increase of carbon and the presence of oxygen on both unetched and nanoetched surfaces. A quantitative comparison of the FTIR spectra revealed significant correlations (Pearson's correlation, R=0.997 [R(2)=0.994, P<0.001]) between the unetched and nanomodified PVC ETT spectra, demonstrating similar surface chemistry. This analysis showed no shifting or widening of the bands in the spectra and no significant changes in the intensity of the infrared peaks due to the degradation of the plasticizer by the fungal lipase. In contrast, results from this study did demonstrate significantly increased nanoscale surface features on the lipase etched compared to non-etched PVC ETTs. This led to a change in surface energetics, which altered ion adsorption to the ETTs. Thus, these results showed that PVC surfaces nanoetched with a 0.1% lipase solution for 48 hours have no significant change on surface chemistry but do significantly increase nanoscale surface roughness and alters ion adsorption, which suggests that the unique properties of these materials, including their previously reported ability to decrease bacterial adhesion and growth, are due to the changes in the degree of the nanoscale roughness, not changes in their surface chemistry.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 19 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 19 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 6 32%
Student > Master 4 21%
Other 3 16%
Student > Bachelor 2 11%
Unknown 4 21%
Readers by discipline Count As %
Environmental Science 3 16%
Biochemistry, Genetics and Molecular Biology 3 16%
Engineering 2 11%
Materials Science 2 11%
Pharmacology, Toxicology and Pharmaceutical Science 1 5%
Other 4 21%
Unknown 4 21%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 30 March 2017.
All research outputs
#20,660,571
of 25,382,440 outputs
Outputs from International Journal of Nanomedicine
#3,127
of 4,122 outputs
Outputs of similar age
#251,546
of 324,443 outputs
Outputs of similar age from International Journal of Nanomedicine
#70
of 95 outputs
Altmetric has tracked 25,382,440 research outputs across all sources so far. This one is in the 10th percentile – i.e., 10% of other outputs scored the same or lower than it.
So far Altmetric has tracked 4,122 research outputs from this source. They receive a mean Attention Score of 4.7. This one is in the 12th percentile – i.e., 12% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 324,443 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 12th percentile – i.e., 12% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 95 others from the same source and published within six weeks on either side of this one. This one is in the 17th percentile – i.e., 17% of its contemporaries scored the same or lower than it.