↓ Skip to main content

Dove Medical Press

Justification of disintegration testing beyond current FDA criteria using in vitro and in silico models

Overview of attention for article published in Drug Design, Development and Therapy, April 2017
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Above-average Attention Score compared to outputs of the same age and source (52nd percentile)

Mentioned by

twitter
3 X users
facebook
1 Facebook page

Citations

dimensions_citation
20 Dimensions

Readers on

mendeley
32 Mendeley
Title
Justification of disintegration testing beyond current FDA criteria using in vitro and in silico models
Published in
Drug Design, Development and Therapy, April 2017
DOI 10.2147/dddt.s131213
Pubmed ID
Authors

Lukas Uebbing, Lukas Klumpp, Gregory K Webster, Raimar Löbenberg

Abstract

Drug product performance testing is an important part of quality-by-design approaches, but this process often lacks the underlying mechanistic understanding of the complex interactions between the disintegration and dissolution processes involved. Whereas a recent draft guideline by the US Food and Drug Administration (FDA) has allowed the replacement of dissolution testing with disintegration testing, the mentioned criteria are not globally accepted. This study provides scientific justification for using disintegration testing rather than dissolution testing as a quality control method for certain immediate release (IR) formulations. A mechanistic approach, which is beyond the current FDA criteria, is presented. Dissolution testing via United States Pharmacopeial Convention Apparatus II at various paddle speeds was performed for immediate and extended release formulations of metronidazole. Dissolution profile fitting via DDSolver and dissolution profile predictions via DDDPlus™ were performed. The results showed that Fickian diffusion and drug particle properties (DPP) were responsible for the dissolution of the IR tablets, and that formulation factors (eg, coning) impacted dissolution only at lower rotation speeds. Dissolution was completely formulation controlled if extended release tablets were tested and DPP were not important. To demonstrate that disintegration is the most important dosage form attribute when dissolution is DPP controlled, disintegration, intrinsic dissolution and dissolution testing were performed in conventional and disintegration impacting media (DIM). Tablet disintegration was affected by DIM and model fitting to the Korsmeyer-Peppas equation showed a growing effect of the formulation in DIM. DDDPlus was able to predict tablet dissolution and the intrinsic dissolution profiles in conventional media and DIM. The study showed that disintegration has to occur before DPP-dependent dissolution can happen. The study suggests that disintegration can be used as performance test of rapidly disintegrating tablets beyond the FDA criteria. The scientific criteria and justification is that dissolution has to be DPP dependent, originated from active pharmaceutical ingredient characteristics and formulations factors have to be negligible.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 32 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 32 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 5 16%
Researcher 4 13%
Student > Postgraduate 4 13%
Student > Master 4 13%
Student > Ph. D. Student 2 6%
Other 4 13%
Unknown 9 28%
Readers by discipline Count As %
Pharmacology, Toxicology and Pharmaceutical Science 11 34%
Chemistry 3 9%
Agricultural and Biological Sciences 2 6%
Nursing and Health Professions 1 3%
Biochemistry, Genetics and Molecular Biology 1 3%
Other 4 13%
Unknown 10 31%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 3. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 03 January 2018.
All research outputs
#14,974,586
of 25,461,852 outputs
Outputs from Drug Design, Development and Therapy
#796
of 2,272 outputs
Outputs of similar age
#166,299
of 324,174 outputs
Outputs of similar age from Drug Design, Development and Therapy
#27
of 59 outputs
Altmetric has tracked 25,461,852 research outputs across all sources so far. This one is in the 40th percentile – i.e., 40% of other outputs scored the same or lower than it.
So far Altmetric has tracked 2,272 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 7.1. This one has gotten more attention than average, scoring higher than 64% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 324,174 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 47th percentile – i.e., 47% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 59 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 52% of its contemporaries.