↓ Skip to main content

Dove Medical Press

Selective laser sintering fabrication of nano-hydroxyapatite/poly-ε-caprolactone scaffolds for bone tissue engineering applications

Overview of attention for article published in International Journal of Nanomedicine, November 2013
Altmetric Badge

About this Attention Score

  • Good Attention Score compared to outputs of the same age (69th percentile)
  • Good Attention Score compared to outputs of the same age and source (72nd percentile)

Mentioned by

twitter
2 X users
patent
1 patent

Citations

dimensions_citation
151 Dimensions

Readers on

mendeley
212 Mendeley
Title
Selective laser sintering fabrication of nano-hydroxyapatite/poly-ε-caprolactone scaffolds for bone tissue engineering applications
Published in
International Journal of Nanomedicine, November 2013
DOI 10.2147/ijn.s50685
Pubmed ID
Authors

Yan Xia, Panyu Zhou, Xiaosong Cheng, Yang Xie, Chong Liang, Chao Li, Shuogui Xu

Abstract

The regeneration of functional tissue in osseous defects is a formidable challenge in orthopedic surgery. In the present study, a novel biomimetic composite scaffold, here called nano-hydroxyapatite (HA)/poly-ε-caprolactone (PCL) was fabricated using a selective laser sintering technique. The macrostructure, morphology, and mechanical strength of the scaffolds were characterized. Scanning electronic microscopy (SEM) showed that the nano-HA/PCL scaffolds exhibited predesigned, well-ordered macropores and interconnected micropores. The scaffolds have a range of porosity from 78.54% to 70.31%, and a corresponding compressive strength of 1.38 MPa to 3.17 MPa. Human bone marrow stromal cells were seeded onto the nano-HA/PCL or PCL scaffolds and cultured for 28 days in vitro. As indicated by the level of cell attachment and proliferation, the nano-HA/PCL showed excellent biocompatibility, comparable to that of PCL scaffolds. The hydrophilicity, mineralization, alkaline phosphatase activity, and Alizarin Red S staining indicated that the nano-HA/PCL scaffolds are more bioactive than the PCL scaffolds in vitro. Measurements of recombinant human bone morphogenetic protein-2 (rhBMP-2) release kinetics showed that after nano-HA was added, the material increased the rate of rhBMP-2 release. To investigate the in vivo biocompatibility and osteogenesis of the composite scaffolds, both nano-HA/PCL scaffolds and PCL scaffolds were implanted in rabbit femur defects for 3, 6, and 9 weeks. The wounds were studied radiographically and histologically. The in vivo results showed that both nano-HA/PCL composite scaffolds and PCL scaffolds exhibited good biocompatibility. However, the nano-HA/PCL scaffolds enhanced the efficiency of new bone formation more than PCL scaffolds and fulfilled all the basic requirements of bone tissue engineering scaffolds. Thus, they show large potential for use in orthopedic and reconstructive surgery.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 212 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 212 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 45 21%
Student > Master 30 14%
Researcher 25 12%
Student > Bachelor 22 10%
Student > Doctoral Student 9 4%
Other 21 10%
Unknown 60 28%
Readers by discipline Count As %
Engineering 55 26%
Materials Science 25 12%
Medicine and Dentistry 13 6%
Agricultural and Biological Sciences 10 5%
Chemistry 9 4%
Other 22 10%
Unknown 78 37%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 4. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 08 March 2022.
All research outputs
#7,778,510
of 25,374,647 outputs
Outputs from International Journal of Nanomedicine
#908
of 4,123 outputs
Outputs of similar age
#67,955
of 226,646 outputs
Outputs of similar age from International Journal of Nanomedicine
#25
of 97 outputs
Altmetric has tracked 25,374,647 research outputs across all sources so far. This one has received more attention than most of these and is in the 69th percentile.
So far Altmetric has tracked 4,123 research outputs from this source. They receive a mean Attention Score of 4.7. This one has done well, scoring higher than 77% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 226,646 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 69% of its contemporaries.
We're also able to compare this research output to 97 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 72% of its contemporaries.