↓ Skip to main content

Dove Medical Press

Antimicrobial photodynamic activity and cytocompatibility of Au25(Capt)18 clusters photoexcited by blue LED light irradiation

Overview of attention for article published in International Journal of Nanomedicine, April 2017
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
30 Dimensions

Readers on

mendeley
50 Mendeley
Title
Antimicrobial photodynamic activity and cytocompatibility of Au25(Capt)18 clusters photoexcited by blue LED light irradiation
Published in
International Journal of Nanomedicine, April 2017
DOI 10.2147/ijn.s131602
Pubmed ID
Authors

Saori Miyata, Hirofumi Miyaji, Hideya Kawasaki, Masaki Yamamoto, Erika Nishida, Hiroko Takita, Tsukasa Akasaka, Natsumi Ushijima, Toshihiko Iwanaga, Tsutomu Sugaya

Abstract

Antimicrobial photodynamic therapy (aPDT) has beneficial effects in dental treatment. We applied captopril-protected gold (Au25(Capt)18) clusters as a novel photosensitizer for aPDT. Photoexcited Au clusters under light irradiation generated singlet oxygen ((1)O2). Accordingly, the antimicrobial and cytotoxic effects of Au25(Capt)18 clusters under dental blue light-emitting diode (LED) irradiation were evaluated. (1)O2 generation of Au25(Capt)18 clusters under blue LED irradiation (420-460 nm) was detected by a methotrexate (MTX) probe. The antimicrobial effects of photoexcited Au clusters (0, 5, 50, and 500 μg/mL) on oral bacterial cells, such as Streptococcus mutans, Aggregatibacter actinomycetemcomitans, and Porphyromonas gingivalis, were assessed by morphological observations and bacterial growth experiments. Cytotoxicity testing of Au clusters and blue LED irradiation was then performed against NIH3T3 and MC3T3-E1 cells. In addition, the biological performance of Au clusters (500 μg/mL) was compared to an organic dye photosensitizer, methylene blue (MB; 10 and 100 μg/mL). We confirmed the (1)O2 generation ability of Au25(Capt)18 clusters through the fluorescence spectra of oxidized MTX. Successful application of photoexcited Au clusters to aPDT was demonstrated by dose-dependent decreases in the turbidity of oral bacterial cells. Morphological observation revealed that application of Au clusters stimulated destruction of bacterial cell walls and inhibited biofilm formation. Aggregation of Au clusters around bacterial cells was fluorescently observed. However, photoexcited Au clusters did not negatively affect the adhesion, spreading, and proliferation of mammalian cells, particularly at lower doses. In addition, application of Au clusters demonstrated significantly better cytocompatibility compared to MB. We found that a combination of Au25(Capt)18 clusters and blue LED irradiation exhibited good antimicrobial effects through (1)O2 generation and biosafe characteristics, which is desirable for aPDT in dentistry.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 50 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 50 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 8 16%
Student > Bachelor 6 12%
Student > Master 6 12%
Researcher 5 10%
Student > Postgraduate 4 8%
Other 6 12%
Unknown 15 30%
Readers by discipline Count As %
Medicine and Dentistry 11 22%
Agricultural and Biological Sciences 5 10%
Chemistry 4 8%
Business, Management and Accounting 2 4%
Biochemistry, Genetics and Molecular Biology 2 4%
Other 6 12%
Unknown 20 40%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 25 April 2017.
All research outputs
#22,764,772
of 25,382,440 outputs
Outputs from International Journal of Nanomedicine
#3,598
of 4,122 outputs
Outputs of similar age
#284,218
of 323,961 outputs
Outputs of similar age from International Journal of Nanomedicine
#78
of 100 outputs
Altmetric has tracked 25,382,440 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 4,122 research outputs from this source. They receive a mean Attention Score of 4.7. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 323,961 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 100 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.