↓ Skip to main content

Dove Medical Press

Greater fibroblast proliferation on an ultrasonicated ZnO/PVC nanocomposite material

Overview of attention for article published in International Journal of Nanomedicine, December 2013
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age

Mentioned by

twitter
3 X users

Readers on

mendeley
21 Mendeley
Title
Greater fibroblast proliferation on an ultrasonicated ZnO/PVC nanocomposite material
Published in
International Journal of Nanomedicine, December 2013
DOI 10.2147/ijn.s54897
Pubmed ID
Authors

Paul M Maschhoff, Benjamin M Geilich, Thomas J Webster

Abstract

There has been a significant and growing concern over nosocomial medical device infections. Previous studies have demonstrated that embedding nanoparticles alone (specifically, zinc oxide [ZnO]) in conventional polymers (eg, polyvinyl chloride [PVC]) can decrease bacteria growth and may have the potential to prevent or disrupt bacterial processes that lead to infection. However, little to no studies have been conducted to determine mammalian cell functions on such a nanocomposite material. Clearly, for certain medical device applications, maintaining healthy mammalian cell functions while decreasing bacteria growth is imperative (yet uncommon). For this reason, in the presented study, ZnO nanoparticles of varying sizes (from 10 nm to >200 nm in diameter) and functionalization (including no functionalization to doping with aluminum oxide and functionalizing with a silane coupling agent KH550) were incorporated into PVC either with or without ultrasonication. Results of this study provided the first evidence of greater fibroblast density after 18 hours of culture on the smallest ZnO nanoparticle incorporated PVC samples with dispersion aided by ultrasonication. Specifically, the greatest amount of fibroblast proliferation was measured on ZnO nanoparticles functionalized with a silane coupling agent KH550; this sample exhibited the greatest dispersion of ZnO nanoparticles. Water droplet tests showed a general trend of decreased hydrophilicity when adding any of the ZnO nanoparticles to PVC, but an increase in hydrophilicity (albeit still below controls or pure PVC) when using ultrasonication to increase ZnO nanoparticle dispersion. Future studies will have to correlate this change in wettability to initial protein adsorption events that may explain fibroblast behavior. Mechanical tests also provided evidence of the ability to tailor mechanical properties of the ZnO/PVC nanocomposites through the use of the different ZnO nanoparticles. Coupled with previous antibacterial studies, the present study demonstrated that highly dispersed ZnO/PVC nanocomposite materials should be further studied for numerous medical device applications.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 21 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Costa Rica 1 5%
Unknown 20 95%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 7 33%
Student > Master 3 14%
Student > Doctoral Student 2 10%
Other 1 5%
Lecturer 1 5%
Other 4 19%
Unknown 3 14%
Readers by discipline Count As %
Engineering 4 19%
Agricultural and Biological Sciences 4 19%
Chemistry 2 10%
Materials Science 2 10%
Medicine and Dentistry 2 10%
Other 5 24%
Unknown 2 10%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 30 December 2013.
All research outputs
#16,721,717
of 25,374,647 outputs
Outputs from International Journal of Nanomedicine
#2,087
of 4,123 outputs
Outputs of similar age
#198,830
of 320,964 outputs
Outputs of similar age from International Journal of Nanomedicine
#52
of 101 outputs
Altmetric has tracked 25,374,647 research outputs across all sources so far. This one is in the 32nd percentile – i.e., 32% of other outputs scored the same or lower than it.
So far Altmetric has tracked 4,123 research outputs from this source. They receive a mean Attention Score of 4.7. This one is in the 40th percentile – i.e., 40% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 320,964 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 36th percentile – i.e., 36% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 101 others from the same source and published within six weeks on either side of this one. This one is in the 17th percentile – i.e., 17% of its contemporaries scored the same or lower than it.