↓ Skip to main content

Dove Medical Press

Role of nanostructured gold surfaces on monocyte activation and Staphylococcus epidermidis biofilm formation

Overview of attention for article published in International Journal of Nanomedicine, February 2014
Altmetric Badge

Mentioned by

video
1 YouTube creator

Readers on

mendeley
64 Mendeley
Title
Role of nanostructured gold surfaces on monocyte activation and Staphylococcus epidermidis biofilm formation
Published in
International Journal of Nanomedicine, February 2014
DOI 10.2147/ijn.s51465
Pubmed ID
Authors

Sara Svensson, Magnus Forsberg, Mats Hulander, Forugh Vazirisani, Anders Palmquist, Jukka Lausmaa, Peter Thomsen, Margarita Trobos

Abstract

The role of material surface properties in the direct interaction with bacteria and the indirect route via host defense cells is not fully understood. Recently, it was suggested that nanostructured implant surfaces possess antimicrobial properties. In the current study, the adhesion and biofilm formation of Staphylococcus epidermidis and human monocyte adhesion and activation were studied separately and in coculture in different in vitro models using smooth gold and well-defined nanostructured gold surfaces. Two polystyrene surfaces were used as controls in the monocyte experiments. Fluorescent viability staining demonstrated a reduction in the viability of S. epidermidis close to the nanostructured gold surface, whereas the smooth gold correlated with more live biofilm. The results were supported by scanning electron microscopy observations, showing higher biofilm tower formations and more mature biofilms on smooth gold compared with nanostructured gold. Unstimulated monocytes on the different substrates demonstrated low activation, reduced gene expression of pro- and anti-inflammatory cytokines, and low cytokine secretion. In contrast, stimulation with opsonized zymosan or opsonized live S. epidermidis for 1 hour significantly increased the production of reactive oxygen species, the gene expression of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), IL-6, and IL-10, as well as the secretion of TNF-α, demonstrating the ability of the cells to elicit a response and actively phagocytose prey. In addition, cells cultured on the smooth gold and the nanostructured gold displayed a different adhesion pattern and a more rapid oxidative burst than those cultured on polystyrene upon stimulation. We conclude that S. epidermidis decreased its viability initially when adhering to nanostructured surfaces compared with smooth gold surfaces, especially in the bacterial cell layers closest to the surface. In contrast, material surface properties neither strongly promoted nor attenuated the activity of monocytes when exposed to zymosan particles or S. epidermidis.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 64 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Netherlands 1 2%
Sweden 1 2%
Belgium 1 2%
Unknown 61 95%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 16 25%
Researcher 10 16%
Student > Master 8 13%
Professor > Associate Professor 6 9%
Student > Bachelor 3 5%
Other 11 17%
Unknown 10 16%
Readers by discipline Count As %
Agricultural and Biological Sciences 12 19%
Medicine and Dentistry 10 16%
Engineering 8 13%
Chemistry 7 11%
Materials Science 7 11%
Other 7 11%
Unknown 13 20%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 12 February 2014.
All research outputs
#22,759,452
of 25,374,647 outputs
Outputs from International Journal of Nanomedicine
#3,598
of 4,123 outputs
Outputs of similar age
#282,803
of 322,718 outputs
Outputs of similar age from International Journal of Nanomedicine
#106
of 106 outputs
Altmetric has tracked 25,374,647 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 4,123 research outputs from this source. They receive a mean Attention Score of 4.7. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 322,718 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 106 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.