↓ Skip to main content

Dove Medical Press

Peptide-modified nanoparticles inhibit formation of Porphyromonas gingivalis biofilms with Streptococcus gordonii

Overview of attention for article published in International Journal of Nanomedicine, June 2017
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Good Attention Score compared to outputs of the same age and source (69th percentile)

Mentioned by

twitter
4 X users
facebook
1 Facebook page

Citations

dimensions_citation
19 Dimensions

Readers on

mendeley
32 Mendeley
Title
Peptide-modified nanoparticles inhibit formation of Porphyromonas gingivalis biofilms with Streptococcus gordonii
Published in
International Journal of Nanomedicine, June 2017
DOI 10.2147/ijn.s139178
Pubmed ID
Authors

Paridhi Kalia, Ankita Jain, Ranjith Radha Krishnan, Donald R Demuth, Jill M Steinbach-Rankins

Abstract

The interaction of Porphyromonas gingivalis with commensal streptococci promotes P. gingivalis colonization of the oral cavity. We previously showed that a synthetic peptide (BAR) derived from Streptococcus gordonii potently inhibited the formation of P. gingivalis/S. gordonii biofilms (IC50 =1.3 µM) and reduced P. gingivalis virulence in a mouse model of periodontitis. Thus, BAR represents a novel therapeutic to control periodontitis by limiting P. gingivalis colonization of the oral cavity. Here, we sought to develop drug-delivery vehicles for potential use in the oral cavity that comprise BAR-modified poly(lactic-co-glycolic)acid (PLGA) nanoparticles (NPs). PLGA-NPs were initially modified with palmitylated avidin and subsequently conjugated with biotinylated BAR. The extent of BAR modification was quantified using a fluorescent-labeled peptide. Inhibition of P. gingivalis adherence to S. gordonii by BAR-modified NPs was compared with free peptide using a two-species biofilm model. BAR-modified NPs exhibited an average size of 99±29 nm and a more positive surface charge than unmodified NPs (zeta potentials of -7 mV and -25 mV, respectively). Binding saturation occurred when 37 nmol BAR/mg of avidin-NPs was used, which resulted in a payload of 7.42 nmol BAR/mg NPs. BAR-modified NPs bound to P. gingivalis in a dose-dependent manner and more potently inhibited P. gingivalis/S. gordonii adherence and biofilm formation relative to an equimolar amount of free peptide (IC50 of 0.2 µM versus 1.3 µM). BAR-modified NPs also disrupted the preformed P. gingivalis/S. gordonii biofilms more effectively than free peptide. Finally, we demonstrate that BAR-modified NPs promoted multivalent association with P. gingivalis, providing an explanation for the increased effectiveness of NPs. These results indicate that BAR-modified NPs deliver a higher local dose of peptide and may represent a more effective therapeutic approach to limit P. gingivalis colonization of the oral cavity compared to treatment with formulations of free peptide.

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 32 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 32 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 6 19%
Student > Master 5 16%
Researcher 4 13%
Student > Bachelor 4 13%
Lecturer 3 9%
Other 3 9%
Unknown 7 22%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 6 19%
Medicine and Dentistry 6 19%
Agricultural and Biological Sciences 4 13%
Immunology and Microbiology 3 9%
Pharmacology, Toxicology and Pharmaceutical Science 2 6%
Other 2 6%
Unknown 9 28%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 3. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 09 April 2019.
All research outputs
#14,605,790
of 25,382,440 outputs
Outputs from International Journal of Nanomedicine
#1,525
of 4,122 outputs
Outputs of similar age
#162,521
of 330,503 outputs
Outputs of similar age from International Journal of Nanomedicine
#25
of 81 outputs
Altmetric has tracked 25,382,440 research outputs across all sources so far. This one is in the 41st percentile – i.e., 41% of other outputs scored the same or lower than it.
So far Altmetric has tracked 4,122 research outputs from this source. They receive a mean Attention Score of 4.7. This one has gotten more attention than average, scoring higher than 61% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 330,503 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 49th percentile – i.e., 49% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 81 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 69% of its contemporaries.