↓ Skip to main content

Dove Medical Press

Silver nanoparticles enhance the apoptotic potential of gemcitabine in human ovarian cancer cells: combination therapy for effective cancer treatment

Overview of attention for article published in International Journal of Nanomedicine, September 2017
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Above-average Attention Score compared to outputs of the same age and source (61st percentile)

Mentioned by

twitter
2 X users

Citations

dimensions_citation
117 Dimensions

Readers on

mendeley
131 Mendeley
Title
Silver nanoparticles enhance the apoptotic potential of gemcitabine in human ovarian cancer cells: combination therapy for effective cancer treatment
Published in
International Journal of Nanomedicine, September 2017
DOI 10.2147/ijn.s135482
Pubmed ID
Authors

Yu-Guo Yuan, Qiu-Ling Peng, Sangiliyandi Gurunathan

Abstract

Gemcitabine (GEM) is widely used as an anticancer agent in several types of solid tumors. Silver nanoparticles (AgNPs) possess unique cytotoxic features and can induce apoptosis in a variety of cancer cells. In this study, we investigated whether the combination of GEM and AgNPs can exert synergistic cytotoxic effects in the human ovarian cancer cell line A2780. We synthesized AgNPs using resveratrol as a reducing and stabilizing agent. The synthesized nanomaterials were characterized using various analytical techniques. The anticancer effects of a combined treatment with GEM and AgNPs were evaluated using a series of cellular assays. The expression of pro- and antiapoptotic genes was measured using real-time reverse transcription polymerase chain reaction. Apoptosis was confirmed by TUNEL assay. In this study, combined treatment with GEM and AgNPs significantly inhibited viability and proliferation in A2780 cells. Moreover, the levels of apoptosis in cells treated with a combination of GEM and AgNPs were significantly higher compared with those in cells treated with GEM or AgNPs alone. Our data suggest that GEM and AgNPs exhibit potent apoptotic activity in human ovarian cancer cells. Combined treatment with GEM and AgNPs showed a significantly higher cytotoxic effect in ovarian cancer cells compared with that induced by either of these agents alone. Our study demonstrated that the interaction between GEM and AgNPs was cytotoxic in ovarian cancer cells. Combined treatment with GEM and AgNPs caused increased cytotoxicity and apoptosis in A2780 cells. This treatment may have therapeutic potential as targeted therapy for the treatment of ovarian cancer. To our knowledge, this study could provide evidence that AgNPs can enhance responsiveness to GEM in ovarian cancer cells and that AgNPs can potentially be used as chemosensitizing agents in ovarian cancer therapy.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 131 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 131 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 23 18%
Student > Bachelor 17 13%
Student > Master 16 12%
Researcher 14 11%
Student > Doctoral Student 6 5%
Other 17 13%
Unknown 38 29%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 21 16%
Pharmacology, Toxicology and Pharmaceutical Science 18 14%
Agricultural and Biological Sciences 12 9%
Chemistry 8 6%
Engineering 5 4%
Other 22 17%
Unknown 45 34%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 19 January 2022.
All research outputs
#15,173,117
of 25,382,440 outputs
Outputs from International Journal of Nanomedicine
#1,664
of 4,122 outputs
Outputs of similar age
#168,739
of 324,453 outputs
Outputs of similar age from International Journal of Nanomedicine
#37
of 102 outputs
Altmetric has tracked 25,382,440 research outputs across all sources so far. This one is in the 38th percentile – i.e., 38% of other outputs scored the same or lower than it.
So far Altmetric has tracked 4,122 research outputs from this source. They receive a mean Attention Score of 4.7. This one has gotten more attention than average, scoring higher than 57% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 324,453 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 46th percentile – i.e., 46% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 102 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 61% of its contemporaries.