↓ Skip to main content

Dove Medical Press

Nano-copper-bearing stainless steel promotes fracture healing by accelerating the callus evolution process

Overview of attention for article published in International Journal of Nanomedicine, November 2017
Altmetric Badge

About this Attention Score

  • Above-average Attention Score compared to outputs of the same age (52nd percentile)
  • Good Attention Score compared to outputs of the same age and source (69th percentile)

Mentioned by

twitter
5 X users
facebook
1 Facebook page

Readers on

mendeley
72 Mendeley
Title
Nano-copper-bearing stainless steel promotes fracture healing by accelerating the callus evolution process
Published in
International Journal of Nanomedicine, November 2017
DOI 10.2147/ijn.s146866
Pubmed ID
Authors

Lei Wang, Guoyuan Li, Ling Ren, Xiangdong Kong, Yugang Wang, Xiuguo Han, Wenbo Jiang, Kerong Dai, Ke Yang, Yongqiang Hao

Abstract

Treatment for fractures requires internal fixation devices, which are mainly produced from stainless steel or titanium alloy without biological functions. Therefore, we developed a novel nano-copper-bearing stainless steel with nano-sized copper-precipitation (317L-Cu SS). Based on previous studies, this work explores the effect of 317L-Cu SS on fracture healing; that is, proliferation, osteogenic differentiation, osteogenesis-related gene expression, and lysyl oxidase activity of human bone mesenchymal stem cells were detected in vitro. Sprague-Dawley rats were used to build an animal fracture model, and fracture healing and callus evolution were investigated by radiology (X-ray and micro-CT), histology (H&E, Masson, and safranin O/fast green staining), and histomorphometry. Further, the Cu2+ content and Runx2 level in the callus were determined, and local mechanical test of the fracture was performed to assess the healing quality. Our results revealed that 317L-Cu SS did not affect the proliferation of human bone mesenchymal stem cells, but promoted osteogenic differentiation and the expression of osteogenesis-related genes. In addition, 317L-Cu SS upregulated the lysyl oxidase activity. The X-ray and micro-CT results showed that the callus evolution efficiency and fracture healing speed were superior for 317L-Cu SS. Histological staining displayed large amounts of fibrous tissues at 3 weeks, and cartilage and new bone at 6 weeks. Further, histomorphometric analysis indicated that the callus possessed higher osteogenic efficiency at 6 weeks, and a high Cu2+ content and increased Runx2 expression were observed in the callus for 317L-Cu SS. Besides, the mechanical strength of the fracture site was much better than that of the control group. Overall, we conclude that 317L-Cu SS possesses the ability to increase Cu2+ content and promote osteogenesis in the callus, which could accelerate the callus evolution process and bone formation to provide faster and better fracture healing.

X Demographics

X Demographics

The data shown below were collected from the profiles of 5 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 72 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 72 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 8 11%
Student > Doctoral Student 4 6%
Researcher 4 6%
Student > Ph. D. Student 4 6%
Lecturer 2 3%
Other 7 10%
Unknown 43 60%
Readers by discipline Count As %
Medicine and Dentistry 11 15%
Biochemistry, Genetics and Molecular Biology 5 7%
Agricultural and Biological Sciences 4 6%
Engineering 2 3%
Materials Science 2 3%
Other 2 3%
Unknown 46 64%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 3. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 14 January 2022.
All research outputs
#8,537,346
of 25,382,440 outputs
Outputs from International Journal of Nanomedicine
#1,077
of 4,122 outputs
Outputs of similar age
#131,439
of 340,752 outputs
Outputs of similar age from International Journal of Nanomedicine
#20
of 84 outputs
Altmetric has tracked 25,382,440 research outputs across all sources so far. This one is in the 43rd percentile – i.e., 43% of other outputs scored the same or lower than it.
So far Altmetric has tracked 4,122 research outputs from this source. They receive a mean Attention Score of 4.7. This one has gotten more attention than average, scoring higher than 63% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 340,752 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 52% of its contemporaries.
We're also able to compare this research output to 84 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 69% of its contemporaries.