↓ Skip to main content

Dove Medical Press

Microtubule-targeting agents can sensitize cancer cells to ionizing radiation by an interphase-based mechanism

Overview of attention for article published in OncoTargets and therapy, November 2017
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
2 X users
facebook
1 Facebook page

Readers on

mendeley
24 Mendeley
Title
Microtubule-targeting agents can sensitize cancer cells to ionizing radiation by an interphase-based mechanism
Published in
OncoTargets and therapy, November 2017
DOI 10.2147/ott.s143096
Pubmed ID
Authors

Daniel Markowitz, Grace Ha, Rosamaria Ruggieri, Marc Symons

Abstract

The cytotoxic effects of microtubule-targeting agents (MTAs) are often attributed to targeted effects on mitotic cells. In clinical practice, MTAs are combined with DNA-damaging agents such as ionizing radiation (IR) with the rationale that mitotic cells are highly sensitive to DNA damage. In contrast, recent studies suggest that MTAs synergize with IR by interfering with the trafficking of DNA damage response (DDR) proteins during interphase. These studies, however, have yet to demonstrate the functional consequences of interfering with interphase microtubules in the presence of IR. To address this, we combined IR with an established MTA, mebendazole (MBZ), to treat glioma cells exclusively during interphase. To test whether MTAs can sensitize interphase cells to IR, we treated GL261 and GBM14 glioma cells with MBZ during 3-9 hours post IR (when the mitotic index was 0%). Cell viability was measured using a WST-1 assay, and radiosensitization was quantified using the dose enhancement factor (DEF). The effect of MBZ on the DDR was studied via Western blot analysis of H2AX phosphorylation. To examine the effects of MTAs on intracellular transport of DDR proteins, Nbs1 and Chk2, cytoplasmic and nuclear fractionation studies were conducted following treatment of glioma cells with MBZ. Treatment with MBZ sensitized interphase cells to the effects of IR, with a maximal DEF of 1.34 in GL261 cells and 1.69 in GBM14 cells. Treatment of interphase cells with MBZ led to more sustained γH2AX levels post IR, indicating a delay in the DDR. Exposure of glioma cells to MBZ resulted in a dose-dependent sequestration of Chk2 and Nbs1 in the cytoplasm. This study demonstrates that MBZ can sensitize cancer cells to IR independently of the induction of mitotic arrest. In addition, evidence is provided supporting the hypothesis that MTA-induced radiosensitization is mediated by inhibiting DDR protein accumulation into the nucleus.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 24 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 24 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 7 29%
Student > Bachelor 4 17%
Professor 1 4%
Other 1 4%
Professor > Associate Professor 1 4%
Other 1 4%
Unknown 9 38%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 7 29%
Medicine and Dentistry 2 8%
Engineering 2 8%
Chemistry 1 4%
Agricultural and Biological Sciences 1 4%
Other 0 0%
Unknown 11 46%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 16 August 2023.
All research outputs
#17,438,425
of 25,584,565 outputs
Outputs from OncoTargets and therapy
#1,145
of 2,967 outputs
Outputs of similar age
#218,528
of 341,375 outputs
Outputs of similar age from OncoTargets and therapy
#34
of 73 outputs
Altmetric has tracked 25,584,565 research outputs across all sources so far. This one is in the 21st percentile – i.e., 21% of other outputs scored the same or lower than it.
So far Altmetric has tracked 2,967 research outputs from this source. They receive a mean Attention Score of 3.0. This one has gotten more attention than average, scoring higher than 51% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 341,375 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 27th percentile – i.e., 27% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 73 others from the same source and published within six weeks on either side of this one. This one is in the 47th percentile – i.e., 47% of its contemporaries scored the same or lower than it.