↓ Skip to main content

Dove Medical Press

Differential radiation response between normal astrocytes and glioma cells revealed by comparative transcriptome analysis

Overview of attention for article published in OncoTargets and therapy, December 2017
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Above-average Attention Score compared to outputs of the same age and source (63rd percentile)

Mentioned by

twitter
2 X users

Citations

dimensions_citation
8 Dimensions

Readers on

mendeley
19 Mendeley
Title
Differential radiation response between normal astrocytes and glioma cells revealed by comparative transcriptome analysis
Published in
OncoTargets and therapy, December 2017
DOI 10.2147/ott.s144002
Pubmed ID
Authors

Liang Gong, Jiacheng Gu, Jianwei Ge, Xiang Wu, Chao Zhang, Chun Yang, Weiji Weng, Guoyi Gao, Junfeng Feng, Qing Mao

Abstract

Normal astrocytes are more resistant to radiation than glioma cells. Radiation-resistant glioma cells and normal astrocytes usuallly share similar mechanisms of radioresistance. Investigation of the underlying mechanisms of differential radiation response between normal astrocytes and glioma cells is thus significant for improvement of glioma treatment. Here, we report on the differential radiation responses between normal astrocytes and glioma cells at the transcriptome level. Human astrocytes (HA) and U251 glioma cell lines were used as in vitro models. The transcriptome profiles of radiation-treated and nontreated HA and U251 cells were generated by next-generation sequencing. In total, 296 mRNAs and 224 lncRNAs in HA and 201 mRNAs and 107 lncRNAs in U251 were found to be differentially expressed after radiation treatment. Bioinformatics analyses indicated that radiation causes similar alterations in HA and U251 cells, while several key pathways involved in cancer development and radiation resistance, including P53, TGF-β, VEGF, Hippo and serotonergic synapse pathways, were oppositely regulated by radiation treatment, suggesting their important role in this process. Furthermore, we showed the critical role of Hippo/YAP signaling in radiation resistance of glioma cells. In summary, our findings revealed novel insights about differential responses between normal astrocytes and glioma cells. Our work suggested that YAP inhibitor could not be used in combination with radiation for glioma treatment.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 19 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 19 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 6 32%
Student > Bachelor 3 16%
Researcher 3 16%
Student > Master 3 16%
Other 2 11%
Other 1 5%
Unknown 1 5%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 3 16%
Medicine and Dentistry 3 16%
Agricultural and Biological Sciences 3 16%
Neuroscience 2 11%
Arts and Humanities 1 5%
Other 1 5%
Unknown 6 32%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 23 December 2017.
All research outputs
#16,725,651
of 25,382,440 outputs
Outputs from OncoTargets and therapy
#984
of 3,016 outputs
Outputs of similar age
#265,935
of 444,941 outputs
Outputs of similar age from OncoTargets and therapy
#23
of 73 outputs
Altmetric has tracked 25,382,440 research outputs across all sources so far. This one is in the 32nd percentile – i.e., 32% of other outputs scored the same or lower than it.
So far Altmetric has tracked 3,016 research outputs from this source. They receive a mean Attention Score of 2.9. This one has gotten more attention than average, scoring higher than 62% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 444,941 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 37th percentile – i.e., 37% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 73 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 63% of its contemporaries.