↓ Skip to main content

Dove Medical Press

A promising magnetic resonance stem cell tracer based on natural biomaterials in a biological system: manganese (II) chelated to melanin nanoparticles

Overview of attention for article published in International Journal of Nanomedicine, March 2018
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
2 X users

Citations

dimensions_citation
10 Dimensions

Readers on

mendeley
17 Mendeley
Title
A promising magnetic resonance stem cell tracer based on natural biomaterials in a biological system: manganese (II) chelated to melanin nanoparticles
Published in
International Journal of Nanomedicine, March 2018
DOI 10.2147/ijn.s157508
Pubmed ID
Authors

Shi-Jie Liu, Ling-Jie Wang, Ying Qiao, Hua Zhang, Li-Ping Li, Jing-Hua Sun, Sheng He, Wen Xu, Xi Yang, Wen-Wen Cai, Jian-Ding Li, Bin-Quan Wang, Rui-Ping Zhang

Abstract

Melanin and manganese are both indispensable natural substances that play crucial roles in the human body. Melanin has been used as a multimodality imaging nanoplatform for biology science research because of its natural binding ability with metal ions (eg, 64Cu2+, Fe3+, and Gd3+). Because of its effects on T1 signal enhancement, Mn-based nanoparticles have been used in magnetic resonance (MR) quantitative cell tracking in vivo. Stem cell tracking in vivo is an essential technology used to characterize engrafted stem cells, including cellular viability, biodistribution, differentiation capacity, and long-term fate. In the present study, manganese(II) ions chelated to melanin nanoparticles [MNP-Mn(II)] were synthesized. The characteristics, stem cell labeling efficiency, and cytotoxicity of the nanoparticles were evaluated. MR imaging of the labeled stem cells in vivo and in vitro were also further performed. In T1 relaxivity (r1), MNP-Mn(II) were significantly more abundant than Omniscan. Bone marrow-derived stem cells (BMSCs) can be labeled easily by coincubating with MNP-Mn(II), suggesting that MNP-Mn(II) had high biocompatibility. Cell Counting Kit-8 assays revealed that MNP-Mn(II) had almost no cytotoxicity when used to label BMSCs, even with a very high concentration (1,600 µg/mL). BMSCs labeled with MNP-Mn(II) could generate a hyperintense T1 signal both in vitro and in vivo, and the hyperintense T1 signal in vivo persisted for at least 28 days. Taken together, our results showed that MNP-Mn(II) possessed many excellent properties for potential quantitative stem cell tracking in vivo.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 17 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 17 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 3 18%
Researcher 3 18%
Student > Ph. D. Student 2 12%
Student > Postgraduate 2 12%
Student > Master 1 6%
Other 1 6%
Unknown 5 29%
Readers by discipline Count As %
Chemistry 3 18%
Biochemistry, Genetics and Molecular Biology 2 12%
Medicine and Dentistry 2 12%
Agricultural and Biological Sciences 1 6%
Engineering 1 6%
Other 0 0%
Unknown 8 47%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 12 August 2018.
All research outputs
#19,951,180
of 25,382,440 outputs
Outputs from International Journal of Nanomedicine
#2,971
of 4,122 outputs
Outputs of similar age
#253,777
of 344,853 outputs
Outputs of similar age from International Journal of Nanomedicine
#49
of 81 outputs
Altmetric has tracked 25,382,440 research outputs across all sources so far. This one is in the 18th percentile – i.e., 18% of other outputs scored the same or lower than it.
So far Altmetric has tracked 4,122 research outputs from this source. They receive a mean Attention Score of 4.7. This one is in the 24th percentile – i.e., 24% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 344,853 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 21st percentile – i.e., 21% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 81 others from the same source and published within six weeks on either side of this one. This one is in the 33rd percentile – i.e., 33% of its contemporaries scored the same or lower than it.