↓ Skip to main content

Dove Medical Press

Competitive inhibition of survivin using a cell-permeable recombinant protein induces cancer-specific apoptosis in colon cancer model

Overview of attention for article published in International Journal of Nanomedicine, February 2015
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
2 X users

Citations

dimensions_citation
19 Dimensions

Readers on

mendeley
30 Mendeley
Title
Competitive inhibition of survivin using a cell-permeable recombinant protein induces cancer-specific apoptosis in colon cancer model
Published in
International Journal of Nanomedicine, February 2015
DOI 10.2147/ijn.s73916
Pubmed ID
Authors

Kislay Roy, Rupinder K Kanwar, Subramanian Krishnakumar, Chun Hei Antonio Cheung, Jagat R Kanwar

Abstract

Endogenous survivin expression has been related with cancer survival, drug resistance, and metastasis. Therapies targeting survivin have been shown to significantly inhibit tumor growth and recurrence. We found out that a cell-permeable dominant negative survivin (SurR9-C84A, referred to as SR9) competitively inhibited endogenous survivin and blocked the cell cycle at the G1/S phase. Nanoencapsulation in mucoadhesive chitosan nanoparticles (CHNP) substantially increased the bioavailability and serum stability of SR9. The mechanism of nanoparticle uptake was studied extensively in vitro and in ex vivo models. Our results confirmed that CHNP-SR9 protected primary cells from autophagy and successfully induced tumor-specific apoptosis via both extrinsic and intrinsic apoptotic pathways. CHNP-SR9 significantly reduced the tumor spheroid size (three-dimensional model) by nearly 7-fold. Effects of SR9 and CHNP-SR9 were studied on 35 key molecules involved in the apoptotic pathway. Highly significant (4.26-fold, P≤0.005) reduction in tumor volume was observed using an in vivo mouse xenograft colon cancer model. It was also observed that net apoptotic (6.25-fold, P≤0.005) and necrotic indexes (3.5-fold, P≤0.05) were comparatively higher in CHNP-SR9 when compared to void CHNP and CHNP-SR9 internalized more in cancer stem cells (4.5-fold, P≤0.005). We concluded that nanoformulation of SR9 did not reduce its therapeutic potential; however, nanoformulation provided SR9 with enhanced stability and better bioavailability. Our study presents a highly tumor-specific protein-based cancer therapy that has several advantages over the normally used chemotherapeutics.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 30 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Brazil 1 3%
Unknown 29 97%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 8 27%
Student > Master 5 17%
Student > Bachelor 4 13%
Lecturer 2 7%
Student > Doctoral Student 2 7%
Other 4 13%
Unknown 5 17%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 6 20%
Medicine and Dentistry 4 13%
Pharmacology, Toxicology and Pharmaceutical Science 4 13%
Agricultural and Biological Sciences 3 10%
Materials Science 2 7%
Other 5 17%
Unknown 6 20%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 27 November 2015.
All research outputs
#19,944,091
of 25,373,627 outputs
Outputs from International Journal of Nanomedicine
#2,971
of 4,123 outputs
Outputs of similar age
#254,536
of 361,169 outputs
Outputs of similar age from International Journal of Nanomedicine
#50
of 76 outputs
Altmetric has tracked 25,373,627 research outputs across all sources so far. This one is in the 18th percentile – i.e., 18% of other outputs scored the same or lower than it.
So far Altmetric has tracked 4,123 research outputs from this source. They receive a mean Attention Score of 4.7. This one is in the 24th percentile – i.e., 24% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 361,169 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 25th percentile – i.e., 25% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 76 others from the same source and published within six weeks on either side of this one. This one is in the 31st percentile – i.e., 31% of its contemporaries scored the same or lower than it.