↓ Skip to main content

Dove Medical Press

Biochemical characterization of the interactions between doxorubicin and lipidic GM1 micelles with or without paclitaxel loading

Overview of attention for article published in International Journal of Nanomedicine, May 2015
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
3 X users

Readers on

mendeley
15 Mendeley
Title
Biochemical characterization of the interactions between doxorubicin and lipidic GM1 micelles with or without paclitaxel loading
Published in
International Journal of Nanomedicine, May 2015
DOI 10.2147/ijn.s77153
Pubmed ID
Authors

Victoria Leonhard, Roxana V Alasino, Ismael D Bianco, Ariel G Garro, Valeria Heredia, Dante M Beltramo

Abstract

Doxorubicin (Dox) is an anthracycline anticancer drug with high water solubility, whose use is limited primarily due to significant side effects. In this study it is shown that Dox interacts with monosialoglycosphingolipid (GM1) ganglioside micelles primarily through hydrophobic interactions independent of pH and ionic strength. In addition, Dox can be incorporated even into GM1 micelles already containing highly hydrophobic paclitaxel (Ptx). However, it was not possible to incorporate Ptx into Dox-containing GM1 micelles, suggesting that Dox could be occupying a more external position in the micelles. This result is in agreement with a higher hydrolysis of Dox than of Ptx when micelles were incubated at alkaline pH. The loading of Dox into GM1 micelles was observed over a broad range of temperature (4°C-55°C). Furthermore, Dox-loaded micelles were stable in aqueous solutions exhibiting no aggregation or precipitation for up to 2 months when kept at 4°C-25°C and even after freeze-thawing cycles. Upon exposure to blood components, Dox-containing micelles were observed to interact with human serum albumin. However, the amount of human serum albumin that ended up being associated to the micelles was inversely related to the amount of Dox, suggesting that both could share their binding sites. In vitro studies on Hep2 cells showed that the cellular uptake and cytotoxic activity of Dox and Ptx from the micellar complexes were similar to those of the free form of these drugs, even when the micelle was covered with albumin. These results support the idea of the existence of different nano-domains in a single micelle and the fact that this micellar model could be used as a platform for loading and delivering hydrophobic and hydrophilic active pharmaceutical ingredients.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 15 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 15 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 4 27%
Student > Master 3 20%
Student > Bachelor 2 13%
Student > Ph. D. Student 2 13%
Other 1 7%
Other 0 0%
Unknown 3 20%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 4 27%
Pharmacology, Toxicology and Pharmaceutical Science 2 13%
Chemistry 2 13%
Medicine and Dentistry 2 13%
Unknown 5 33%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 07 May 2015.
All research outputs
#16,048,318
of 25,374,917 outputs
Outputs from International Journal of Nanomedicine
#1,887
of 4,122 outputs
Outputs of similar age
#150,234
of 278,918 outputs
Outputs of similar age from International Journal of Nanomedicine
#42
of 89 outputs
Altmetric has tracked 25,374,917 research outputs across all sources so far. This one is in the 34th percentile – i.e., 34% of other outputs scored the same or lower than it.
So far Altmetric has tracked 4,122 research outputs from this source. They receive a mean Attention Score of 4.7. This one is in the 49th percentile – i.e., 49% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 278,918 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 43rd percentile – i.e., 43% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 89 others from the same source and published within six weeks on either side of this one. This one is in the 44th percentile – i.e., 44% of its contemporaries scored the same or lower than it.