↓ Skip to main content

Dove Medical Press

Delivery of microRNA-146a with polyethylenimine nanoparticles inhibits renal fibrosis in vivo

Overview of attention for article published in International Journal of Nanomedicine, May 2015
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
4 X users

Citations

dimensions_citation
79 Dimensions

Readers on

mendeley
44 Mendeley
citeulike
1 CiteULike
Title
Delivery of microRNA-146a with polyethylenimine nanoparticles inhibits renal fibrosis in vivo
Published in
International Journal of Nanomedicine, May 2015
DOI 10.2147/ijn.s82587
Pubmed ID
Authors

Yoshiyuki Morishita, Toshimi Imai, Hiromichi Yoshizawa, Minami Watanabe, Kenichi Ishibashi, Shigeaki Muto, Daisuke Nagata

Abstract

Renal fibrosis is the final common pathway leading to end-stage renal disease. Although microRNA (miR) was recently shown to be involved in the development of renal fibrosis, few studies have focused on the effects on renal fibrosis of exogenous miR delivered in an in vivo therapeutic setting. The study reported here investigated the effects of miR-146a delivery using polyethylenimine nanoparticles (PEI-NPs) on renal fibrosis in vivo. PEI-NPs bearing miR-146 or control-miR (nitrogen/phosphate ratio: 6) were injected into the tail vein of a mouse model of renal fibrosis induced by unilateral ureteral obstruction. PEI-NPs bearing miR-146 significantly enhanced miR-146a expression in the obstructed kidney compared with the control group, while inhibiting the renal fibrosis area, expression of alpha-smooth muscle actin, and infiltration of F4/80-positive macrophages into the obstructed kidney. In addition, PEI-NPs bearing miR-146a inhibited the transforming growth factor beta 1-Smad and tumor necrosis factor receptor-associated factor 6-nuclear factor kappa B signaling pathways. Control-miR-PEI-NPs did not show any of these effects. These results suggest that the delivery of miR-146a attenuated renal fibrosis by inhibiting pro-fibrotic and inflammatory signaling pathways and that the delivery of appropriate miRs may be a therapeutic option for preventing renal fibrosis in vivo.

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 44 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 44 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 8 18%
Researcher 6 14%
Student > Master 5 11%
Student > Doctoral Student 4 9%
Student > Postgraduate 3 7%
Other 9 20%
Unknown 9 20%
Readers by discipline Count As %
Medicine and Dentistry 11 25%
Agricultural and Biological Sciences 10 23%
Biochemistry, Genetics and Molecular Biology 7 16%
Pharmacology, Toxicology and Pharmaceutical Science 2 5%
Veterinary Science and Veterinary Medicine 1 2%
Other 4 9%
Unknown 9 20%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 23 May 2015.
All research outputs
#16,048,009
of 25,374,917 outputs
Outputs from International Journal of Nanomedicine
#1,887
of 4,123 outputs
Outputs of similar age
#150,234
of 278,918 outputs
Outputs of similar age from International Journal of Nanomedicine
#42
of 89 outputs
Altmetric has tracked 25,374,917 research outputs across all sources so far. This one is in the 34th percentile – i.e., 34% of other outputs scored the same or lower than it.
So far Altmetric has tracked 4,123 research outputs from this source. They receive a mean Attention Score of 4.7. This one is in the 49th percentile – i.e., 49% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 278,918 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 43rd percentile – i.e., 43% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 89 others from the same source and published within six weeks on either side of this one. This one is in the 44th percentile – i.e., 44% of its contemporaries scored the same or lower than it.