↓ Skip to main content

Dove Medical Press

Histone demethylase LSD1-mediated repression of GATA-2 is critical for erythroid differentiation

Overview of attention for article published in Drug Design, Development and Therapy, June 2015
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Above-average Attention Score compared to outputs of the same age and source (64th percentile)

Mentioned by

twitter
3 X users
googleplus
1 Google+ user

Citations

dimensions_citation
22 Dimensions

Readers on

mendeley
28 Mendeley
Title
Histone demethylase LSD1-mediated repression of GATA-2 is critical for erythroid differentiation
Published in
Drug Design, Development and Therapy, June 2015
DOI 10.2147/dddt.s81911
Pubmed ID
Authors

Yidi Guo, Xueqi Fu, Yue Jin, Jing Sun, Ye Liu, Bo Huo, Xiang Li, Xin Hu

Abstract

The transcription factor GATA-2 is predominantly expressed in hematopoietic stem and progenitor cells and counteracts the erythroid-specific transcription factor GATA-1, to modulate the proliferation and differentiation of hematopoietic cells. During hematopoietic cell differentiation, GATA-2 exhibits dynamic expression patterns, which are regulated by multiple transcription factors. Stable LSD1-knockdown cell lines were established by growing murine erythroleukemia (MEL) or mouse embryonic stem cells together with virus particles, in the presence of Polybrene(®) at 4 μg/mL, for 24-48 hours followed by puromycin selection (1 μg/mL) for 2 weeks. Real-time polymerase chain reaction (PCR)-based quantitative chromatin immunoprecipitation (ChIP) analysis was used to test whether the TAL1 transcription factor is bound to 1S promoter in the GATA-2 locus or whether LSD1 colocalizes with TAL1 at the 1S promoter. The sequential ChIP assay was utilized to confirm the role of LSD1 in the regulation of H3K4me2 at the GATA-2 locus during erythroid differentiation. Western blot analysis was employed to detect the protein expression. The alamarBlue(®) assay was used to examine the proliferation of the cells, and the absorbance was monitored at optical density (OD) 570 nm and OD 600 nm. In this study, we showed that LSD1 regulates the expression of GATA-2 during erythroid differentiation. Knockdown of LSD1 results in increased GATA-2 expression and inhibits the differentiation of MEL and embryonic stem cells. Furthermore, we demonstrated that LSD1 binds to the 1S promoter of the GATA-2 locus and suppresses GATA-2 expression, via histone demethylation. Our data revealed that LSD1 mediates erythroid differentiation, via epigenetic modification of the GATA-2 locus.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 28 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 28 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 6 21%
Student > Ph. D. Student 5 18%
Student > Bachelor 5 18%
Student > Master 5 18%
Other 1 4%
Other 1 4%
Unknown 5 18%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 8 29%
Agricultural and Biological Sciences 8 29%
Chemistry 2 7%
Neuroscience 2 7%
Social Sciences 1 4%
Other 2 7%
Unknown 5 18%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 30 March 2016.
All research outputs
#15,168,964
of 25,373,627 outputs
Outputs from Drug Design, Development and Therapy
#819
of 2,268 outputs
Outputs of similar age
#137,667
of 281,402 outputs
Outputs of similar age from Drug Design, Development and Therapy
#44
of 126 outputs
Altmetric has tracked 25,373,627 research outputs across all sources so far. This one is in the 38th percentile – i.e., 38% of other outputs scored the same or lower than it.
So far Altmetric has tracked 2,268 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 7.1. This one has gotten more attention than average, scoring higher than 62% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 281,402 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 49th percentile – i.e., 49% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 126 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 64% of its contemporaries.