↓ Skip to main content

Dove Medical Press

Controlled release of organic–inorganic nanohybrid:cefadroxil intercalated Zn–Al-layered double hydroxide

Overview of attention for article published in International Journal of Nanomedicine, May 2018
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Above-average Attention Score compared to outputs of the same age and source (54th percentile)

Mentioned by

twitter
3 X users

Citations

dimensions_citation
28 Dimensions

Readers on

mendeley
55 Mendeley
Title
Controlled release of organic–inorganic nanohybrid:cefadroxil intercalated Zn–Al-layered double hydroxide
Published in
International Journal of Nanomedicine, May 2018
DOI 10.2147/ijn.s138840
Pubmed ID
Authors

Sher Bahadar Khan, Khalid A Alamry, Nedaa A Alyahyawi, Abdullah M Asiri

Abstract

The intercalation of an antibiotic drug, cefadroxil (CD), into the inter-gallery of Zn, Al nitrate-layered double hydroxide (LDH) was accomplished using a co-precipitation method. This formed a nanostructured organic-inorganic hybrid material that can be exploited for the preparation of a controlled release formulation. The drug-LDH nanohybrid was characterized by using field emission scanning electron microscopy (FE-SEM), energy dispersive X-ray spectroscopy (EDS), Fourier transform infrared spectroscopy (FTIR) thermogravimetric (TG) analysis, X-ray powder diffraction (XRD) and UV-visible (UV-vis) absorption spectroscopy, which confirmed the intercalation process. Release tests of nanohybrid in the presence or absence of NaCl or poly-acrylamide (PAM) were performed in vitro in gastric (pH 1.2), lysosomal (pH 4.0), intestinal (pH 6.8) and blood (pH 7.4) simulated fluid using UV-vis spectroscopy. At pH 1.2, LDH was dissolved and intercalated antibiotic released from ZnAl-CD in a molecular form, which led to a significant increase in the antibiotic's solubility. Results showed that the release of drug from nanohybrid at pH 4.0, 6.8 and 7.4 was a sustained process. This material might reduce side effects by the release of the drug in a controlled manner. However, it was found that the presence of Cl or PAM species in the release media has a negative impact on the release behavior. The weathering mechanism is responsible for the release of CD from the nanocomposite at pH 1.2, while the mechanism of anion exchange may be responsible for the release behavior at pH 4.0, 6.8 and 7.4. A number of kinetic models were chosen to gain more insights into the mechanisms of drug release. At pH 1.2, the zero-order model most satisfactorily explained the release kinetics of CD, while the release data of CD at pH 4.0, 6.8 and 7.4 were governed by Bhaskar kinetics.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 55 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 55 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 11 20%
Student > Bachelor 8 15%
Student > Master 7 13%
Other 4 7%
Researcher 4 7%
Other 7 13%
Unknown 14 25%
Readers by discipline Count As %
Chemistry 7 13%
Chemical Engineering 5 9%
Materials Science 5 9%
Pharmacology, Toxicology and Pharmaceutical Science 4 7%
Nursing and Health Professions 2 4%
Other 6 11%
Unknown 26 47%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 3. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 28 June 2018.
All research outputs
#14,605,790
of 25,382,440 outputs
Outputs from International Journal of Nanomedicine
#1,525
of 4,122 outputs
Outputs of similar age
#169,553
of 339,234 outputs
Outputs of similar age from International Journal of Nanomedicine
#32
of 70 outputs
Altmetric has tracked 25,382,440 research outputs across all sources so far. This one is in the 41st percentile – i.e., 41% of other outputs scored the same or lower than it.
So far Altmetric has tracked 4,122 research outputs from this source. They receive a mean Attention Score of 4.7. This one has gotten more attention than average, scoring higher than 61% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 339,234 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 49th percentile – i.e., 49% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 70 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 54% of its contemporaries.