↓ Skip to main content

Dove Medical Press

Effects of histamine and its antagonists on murine T-cells and bone marrow-derived dendritic cells

Overview of attention for article published in Drug Design, Development and Therapy, August 2015
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Good Attention Score compared to outputs of the same age and source (65th percentile)

Mentioned by

twitter
4 X users

Citations

dimensions_citation
3 Dimensions

Readers on

mendeley
7 Mendeley
Title
Effects of histamine and its antagonists on murine T-cells and bone marrow-derived dendritic cells
Published in
Drug Design, Development and Therapy, August 2015
DOI 10.2147/dddt.s89792
Pubmed ID
Authors

Xiufen Hu, Mohammad Ishraq Zafar, Feng Gao

Abstract

We determined the effects of histamine and its antagonists on the surface marker expression of dendritic cells (DCs) and the influence of lipopolysaccharide (LPS), histamine, and histamine receptor antagonists on DCs and T-cells. The bone marrow was extracted from the femurs and tibiae of 6- to 8-week-old female Balb/c mice and cultured in medium containing penicillin, streptomycin, L-glutamine, fetal calf serum, or granulocyte macrophage colony-stimulating factor (GM-CSF) alone or with interleukin (IL)-4. The cells received three different doses of LPS and histamine, plus three different doses of descarboethoxyloratadine (DCL). We assayed the supernatant for various cytokines. The spleen cells of DO11.10 mice were examined by flow cytometry, which included labeling and sorting CD4+ T-cells, as well as coculture of DCs and T-cells with ovalbumin (OVA)323-339 peptide. Histamine or histamine plus DCL did not affect the expression of major histocompatibility complex class II, CD11c, CD11b, CD86, and CD80. However, GM-CSF increased the expression of all markers except CD80. Histamine increased interferon-γ production in GM-CSF + IL-4-cultured cells; it also enhanced IL-10 production, but suppressed IL-12 production in LPS-stimulated DCs with no DCL. Cimetidine inhibited IL-10 production and restored IL-12 secretion in LPS-treated DCs. LPS increased IL-10 and decreased IL-12 levels. GM-CSF + IL-4-generated DCs had a stronger stimulatory effect on DO11.10 T-cell proliferation than GM-CSF-generated DCs. Inducible costimulator ligand expression was higher in GM-CSF + IL-4- than in GM-CSF-generated DC groups after 2 days of coculture, but decreased 4 days later. IL-13 production was higher in bone marrow DCs generated with GM-CSF than in those generated with GM-CSF + IL-4. OVA-pulsed DCs and OVA-plus-DCL DCs showed increased IL-12 levels. OVA plus LPS increased both IL-10 and interferon-α. Although histamine or histamine receptor-1 antagonists did not influence DC LPS-driven maturation, they influenced cytokine production. LPS and GM-CSF influenced surface marker expression and cytokine production.

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 7 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 7 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 3 43%
Student > Ph. D. Student 1 14%
Researcher 1 14%
Student > Postgraduate 1 14%
Unknown 1 14%
Readers by discipline Count As %
Agricultural and Biological Sciences 2 29%
Biochemistry, Genetics and Molecular Biology 1 14%
Computer Science 1 14%
Immunology and Microbiology 1 14%
Unknown 2 29%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 04 June 2016.
All research outputs
#15,168,964
of 25,371,288 outputs
Outputs from Drug Design, Development and Therapy
#819
of 2,268 outputs
Outputs of similar age
#134,174
of 276,419 outputs
Outputs of similar age from Drug Design, Development and Therapy
#50
of 151 outputs
Altmetric has tracked 25,371,288 research outputs across all sources so far. This one is in the 38th percentile – i.e., 38% of other outputs scored the same or lower than it.
So far Altmetric has tracked 2,268 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 7.1. This one has gotten more attention than average, scoring higher than 62% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 276,419 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 49th percentile – i.e., 49% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 151 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 65% of its contemporaries.