↓ Skip to main content

Dove Medical Press

Antiangiogenic cytokines as potential new therapeutic targets for resveratrol in diabetic retinopathy

Overview of attention for article published in Drug Design, Development and Therapy, July 2018
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Above-average Attention Score compared to outputs of the same age and source (53rd percentile)

Mentioned by

twitter
2 X users
facebook
1 Facebook page

Citations

dimensions_citation
29 Dimensions

Readers on

mendeley
57 Mendeley
Title
Antiangiogenic cytokines as potential new therapeutic targets for resveratrol in diabetic retinopathy
Published in
Drug Design, Development and Therapy, July 2018
DOI 10.2147/dddt.s156941
Pubmed ID
Authors

Mihaela Popescu, Cătălina Bogdan, Adela Pintea, Dumitriţa Rugină, Corina Ionescu

Abstract

Diabetes mellitus (DM) affects >350 million people worldwide. With many complications that can reduce the patient's quality of life, vision loss is one of the most debilitating disorders it can cause. Active research in the field of diabetes includes microvascular complications in diabetic retinopathy (DR). Disturbances in the balance of pro-angiogenesis and anti-angiogenesis factors can lead to the progression of DR. The retinal pigment epithelium (RPE) is the outermost layer of the retina, and it is essential in maintaining the visual function. The RPE produces and secretes growth factors as well as protective agents which maintain structural integrity of the retina. Small natural molecules, such as resveratrol, may influence neurotrophic factors of the retina. The pigment epithelium-derived factor (PEDF) and thrombospondin-1 (TSP-1) are secreted by RPE cells. These two proteins inhibit angiogenesis and inflammation in RPE cells. An alteration of their production contributes to various eye diseases. There is a critical balance between two important factors secreted on opposite sides of the RPE: at the basal side, vascular endothelial growth factor (VEGF; acts on the choroidal endothelium) and, on the apical side, PEDF (acts on neurons and photoreceptors). Resveratrol inhibits VEGF expression in human adult RPE cells and limits the development of proliferative vitreoretinopathy, by attenuating transforming growth factor-β2-induced wound closure and cell migration. Possible new mechanisms could include PEDF and TSP-1 expression alterations under physiological and pathological conditions. Resveratrol is currently of interest due to its capacity to influence the cell's secretory activity. Some limitations arise from its low bioavailability. Several drug delivery systems are currently tested, promising to improve tissue concentrations. This article reviews biological pathways involved in the pathogenesis of DR that could be influenced by resveratrol. A study of these pathways could identify new potential targets for the reduction of diabetic complications.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 57 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 57 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 13 23%
Student > Master 8 14%
Student > Doctoral Student 4 7%
Researcher 4 7%
Student > Postgraduate 3 5%
Other 9 16%
Unknown 16 28%
Readers by discipline Count As %
Medicine and Dentistry 11 19%
Biochemistry, Genetics and Molecular Biology 7 12%
Agricultural and Biological Sciences 6 11%
Pharmacology, Toxicology and Pharmaceutical Science 3 5%
Neuroscience 2 4%
Other 9 16%
Unknown 19 33%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 04 July 2018.
All research outputs
#15,879,822
of 25,584,565 outputs
Outputs from Drug Design, Development and Therapy
#876
of 2,254 outputs
Outputs of similar age
#192,252
of 342,091 outputs
Outputs of similar age from Drug Design, Development and Therapy
#30
of 65 outputs
Altmetric has tracked 25,584,565 research outputs across all sources so far. This one is in the 36th percentile – i.e., 36% of other outputs scored the same or lower than it.
So far Altmetric has tracked 2,254 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 7.3. This one has gotten more attention than average, scoring higher than 59% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 342,091 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 42nd percentile – i.e., 42% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 65 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 53% of its contemporaries.