↓ Skip to main content

Dove Medical Press

Evaluation of an automated single-channel sleep staging algorithm

Overview of attention for article published in Nature and science of sleep, September 2015
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age

Mentioned by

twitter
3 X users
facebook
1 Facebook page

Citations

dimensions_citation
80 Dimensions

Readers on

mendeley
70 Mendeley
Title
Evaluation of an automated single-channel sleep staging algorithm
Published in
Nature and science of sleep, September 2015
DOI 10.2147/nss.s77888
Pubmed ID
Authors

Ying Wang, Kenneth A Loparo, Monica R Kelly, Richard F Kaplan

Abstract

We previously published the performance evaluation of an automated electroencephalography (EEG)-based single-channel sleep-wake detection algorithm called Z-ALG used by the Zmachine(®) sleep monitoring system. The objective of this paper is to evaluate the performance of a new algorithm called Z-PLUS, which further differentiates sleep as detected by Z-ALG into Light Sleep, Deep Sleep, and Rapid Eye Movement (REM) Sleep, against laboratory polysomnography (PSG) using a consensus of expert visual scorers. Single night, in-lab PSG recordings from 99 subjects (52F/47M, 18-60 years, median age 32.7 years), including both normal sleepers and those reporting a variety of sleep complaints consistent with chronic insomnia, sleep apnea, and restless leg syndrome, as well as those taking selective serotonin reuptake inhibitor/serotonin-norepinephrine reuptake inhibitor antidepressant medications, previously evaluated using Z-ALG were re-examined using Z-PLUS. EEG data collected from electrodes placed at the differential-mastoids (A1-A2) were processed by Z-ALG to determine wake and sleep, then those epochs detected as sleep were further processed by Z-PLUS to differentiate into Light Sleep, Deep Sleep, and REM. EEG data were visually scored by multiple certified polysomnographic technologists according to the Rechtschaffen and Kales criterion, and then combined using a majority-voting rule to create a PSG Consensus score file for each of the 99 subjects. Z-PLUS output was compared to the PSG Consensus score files for both epoch-by-epoch (eg, sensitivity, specificity, and kappa) and sleep stage-related statistics (eg, Latency to Deep Sleep, Latency to REM, Total Deep Sleep, and Total REM). Sensitivities of Z-PLUS compared to the PSG Consensus were 0.84 for Light Sleep, 0.74 for Deep Sleep, and 0.72 for REM. Similarly, positive predictive values were 0.85 for Light Sleep, 0.78 for Deep Sleep, and 0.73 for REM. Overall, kappa agreement of 0.72 is indicative of substantial agreement. This study demonstrates that Z-PLUS can automatically assess sleep stage using a single A1-A2 EEG channel when compared to the sleep stage scoring by a consensus of polysomnographic technologists. Our findings suggest that Z-PLUS may be used in conjunction with Z-ALG for single-channel EEG-based sleep staging.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 70 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 1 1%
Unknown 69 99%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 15 21%
Researcher 15 21%
Student > Master 10 14%
Student > Bachelor 4 6%
Student > Doctoral Student 2 3%
Other 9 13%
Unknown 15 21%
Readers by discipline Count As %
Engineering 14 20%
Computer Science 7 10%
Neuroscience 7 10%
Medicine and Dentistry 7 10%
Psychology 5 7%
Other 10 14%
Unknown 20 29%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 02 October 2015.
All research outputs
#16,048,009
of 25,374,647 outputs
Outputs from Nature and science of sleep
#391
of 629 outputs
Outputs of similar age
#147,241
of 276,791 outputs
Outputs of similar age from Nature and science of sleep
#3
of 4 outputs
Altmetric has tracked 25,374,647 research outputs across all sources so far. This one is in the 34th percentile – i.e., 34% of other outputs scored the same or lower than it.
So far Altmetric has tracked 629 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 26.6. This one is in the 34th percentile – i.e., 34% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 276,791 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 44th percentile – i.e., 44% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 4 others from the same source and published within six weeks on either side of this one.