↓ Skip to main content

Dove Medical Press

Dacomitinib in lung cancer: a “lost generation” EGFR tyrosine-kinase inhibitor from a bygone era?

Overview of attention for article published in Drug Design, Development and Therapy, October 2015
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
1 X user
facebook
1 Facebook page

Citations

dimensions_citation
26 Dimensions

Readers on

mendeley
49 Mendeley
Title
Dacomitinib in lung cancer: a “lost generation” EGFR tyrosine-kinase inhibitor from a bygone era?
Published in
Drug Design, Development and Therapy, October 2015
DOI 10.2147/dddt.s52787
Pubmed ID
Authors

Sai-Hong Ignatius Ou, Ross A Soo

Abstract

EGFR tyrosine-kinase inhibitors (TKIs) have now been firmly established as the first-line treatment for non-small-cell lung cancer (NSCLC) patients harboring activating EGFR mutations, based on seven prospective randomized Phase III trials. However, despite significantly improved overall response rate and improved median progression-free survival when compared to platinum-doublet chemotherapy, EGFR-mutant NSCLC patients treated with EGFR TKIs invariably progress due to the emergence of acquired resistances, with the gatekeeper T790M mutation accounting for up to 60% of the resistance mechanisms. Second-generation irreversible EGFR TKIs were developed in part to inhibit the T790M mutation, in addition to the common activating EGFR mutations. Dacomitinib is one such second-generation EGFR TKI designed to inhibit both the wild-type (WT) EGFR and EGFR T790M. Afatinib is another second-generation EGR TKI that has been now been approved for the first-line treatment of EGFR-mutant NSCLC patients, while dacomitinib continues to undergo clinical evaluation. We will review the clinical development of dacomitinib from Phase I to Phase III trials, including the two recently published negative large-scale randomized Phase III trials (ARCHER 1009, NCIC-BR-26). Results from another large-scale randomized trial (ARCHER 1050) comparing dacomitinib to gefitinib as first-line treatment of advanced treatment-naïve EGFR-mutant NSCLC patients will soon be available and will serve as the lynchpin trial for the potential approval of dacomitinib in NSCLC. Meanwhile, third-generation EGFR TKIs (eg, CO-1686 [rociletinib], AZ9291, HM61713, EGF816, and ASP8273) that preferentially and potently inhibit EGFR T790M but not WT EGFR are in full-scale clinical development, and some of these EGFR TKIs have received "breakthrough" designation by the US Food and Drug Administration and will likely be approved in late 2015. Given the rapid development of third-generation EGFR TKIs and the approval of gefitinib, erlotinib, and afatinib as first-line treatment of EGFR-mutant NSCLC patients, the future role of dacomitinib in the treatment of NSCLC seems to be limited.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 49 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 49 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 9 18%
Student > Master 6 12%
Student > Ph. D. Student 5 10%
Other 4 8%
Professor 2 4%
Other 8 16%
Unknown 15 31%
Readers by discipline Count As %
Medicine and Dentistry 12 24%
Agricultural and Biological Sciences 5 10%
Pharmacology, Toxicology and Pharmaceutical Science 3 6%
Biochemistry, Genetics and Molecular Biology 2 4%
Neuroscience 2 4%
Other 7 14%
Unknown 18 37%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 18 October 2015.
All research outputs
#19,942,887
of 25,371,288 outputs
Outputs from Drug Design, Development and Therapy
#1,310
of 2,268 outputs
Outputs of similar age
#196,264
of 286,873 outputs
Outputs of similar age from Drug Design, Development and Therapy
#61
of 110 outputs
Altmetric has tracked 25,371,288 research outputs across all sources so far. This one is in the 18th percentile – i.e., 18% of other outputs scored the same or lower than it.
So far Altmetric has tracked 2,268 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 7.1. This one is in the 36th percentile – i.e., 36% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 286,873 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 26th percentile – i.e., 26% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 110 others from the same source and published within six weeks on either side of this one. This one is in the 36th percentile – i.e., 36% of its contemporaries scored the same or lower than it.