↓ Skip to main content

Dove Medical Press

Nanoshell-mediated photothermal therapy can enhance chemotherapy in inflammatory breast cancer cells

Overview of attention for article published in International Journal of Nanomedicine, November 2015
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
3 X users

Readers on

mendeley
68 Mendeley
Title
Nanoshell-mediated photothermal therapy can enhance chemotherapy in inflammatory breast cancer cells
Published in
International Journal of Nanomedicine, November 2015
DOI 10.2147/ijn.s93031
Pubmed ID
Authors

Brittany L Fay, Jilian R Melamed, Emily S Day

Abstract

Nanoshell-mediated photothermal therapy (PTT) is currently being investigated as a standalone therapy for the treatment of cancer. The cellular effects of PTT include loss of membrane integrity, so we hypothesized that nanoshell-mediated PTT could potentiate the cytotoxicity of chemotherapy by improving drug accumulation in cancer cells. In this work, we validated our hypothesis using doxorubicin as a model drug and SUM149 inflammatory breast cancer cells as a model cancer subtype. In initial studies, SUM149 cells were exposed to nano-shells and near-infrared light and then stained with ethidium homodimer-1, which is excluded from cells with an intact plasma membrane. The results confirmed that nanoshell-mediated PTT could increase membrane permeability in SUM149 cells. In complementary experiments, SUM149 cells treated with nanoshells, near-infrared light, or a combination of the two to yield low-dose PTT were exposed to fluorescent rhodamine 123. Analyzing rhodamine 123 fluorescence in cells via flow cytometry confirmed that increased membrane permeability caused by PTT could enhance drug accumulation in cells. This was validated using fluorescence microscopy to assess intracellular distribution of doxorubicin. In succeeding experiments, SUM149 cells were exposed to subtherapeutic levels of doxorubicin, low-dose PTT, or a combination of the two treatments to determine whether the additional drug uptake induced by PTT is sufficient to enhance cell death. Analysis revealed minimal loss of viability relative to controls in cells exposed to subtherapeutic levels of doxorubicin, 15% loss of viability in cells exposed to low-dose PTT, and 35% loss of viability in cells exposed to combination therapy. These data indicate that nanoshell-mediated PTT is a viable strategy to potentiate the effects of chemotherapy and warrant further investigation of this approach using other drugs and cancer subtypes.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 68 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
India 1 1%
Unknown 67 99%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 17 25%
Student > Master 11 16%
Student > Bachelor 7 10%
Researcher 6 9%
Student > Postgraduate 3 4%
Other 9 13%
Unknown 15 22%
Readers by discipline Count As %
Chemistry 12 18%
Agricultural and Biological Sciences 8 12%
Materials Science 8 12%
Engineering 7 10%
Biochemistry, Genetics and Molecular Biology 4 6%
Other 11 16%
Unknown 18 26%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 11 November 2015.
All research outputs
#16,048,009
of 25,374,647 outputs
Outputs from International Journal of Nanomedicine
#1,886
of 4,123 outputs
Outputs of similar age
#156,992
of 294,815 outputs
Outputs of similar age from International Journal of Nanomedicine
#60
of 112 outputs
Altmetric has tracked 25,374,647 research outputs across all sources so far. This one is in the 34th percentile – i.e., 34% of other outputs scored the same or lower than it.
So far Altmetric has tracked 4,123 research outputs from this source. They receive a mean Attention Score of 4.7. This one is in the 49th percentile – i.e., 49% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 294,815 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 44th percentile – i.e., 44% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 112 others from the same source and published within six weeks on either side of this one. This one is in the 38th percentile – i.e., 38% of its contemporaries scored the same or lower than it.