↓ Skip to main content

Dove Medical Press

Asthma and poly(ADP-ribose) polymerase inhibition: a new therapeutic approach

Overview of attention for article published in Drug Design, Development and Therapy, February 2018
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • Good Attention Score compared to outputs of the same age (76th percentile)
  • Good Attention Score compared to outputs of the same age and source (73rd percentile)

Mentioned by

twitter
1 X user
patent
7 patents

Citations

dimensions_citation
18 Dimensions

Readers on

mendeley
25 Mendeley
Title
Asthma and poly(ADP-ribose) polymerase inhibition: a new therapeutic approach
Published in
Drug Design, Development and Therapy, February 2018
DOI 10.2147/dddt.s150846
Pubmed ID
Authors

Raffaela Zaffini, Giovanni Gotte, Marta Menegazzi

Abstract

Asthma is a chronic lung disease affecting people of all ages worldwide, and it frequently begins in childhood. Because of its chronic nature, it is characterized by pathological manifestations, including airway inflammation, remodeling, and goblet cell hyperplasia. Current therapies for asthma, including corticosteroids and beta-2 adrenergic agonists, are directed toward relieving the symptoms of the asthmatic response, with poor effectiveness against the underlying causes of the disease. Asthma initiation and progression depends on the T helper (Th) 2 type immune response carried out by a complex interplay of cytokines, such as interleukin (IL) 4, IL5, and IL13, and the signal transducer and activator of transcription 6. Much of the data resulting from different laboratories support the role of poly(ADP-ribose) polymerase (PARP) 1 and PARP14 activation in asthma. Indeed, PARP enzymes play key roles in the regulation and progression of the inflammatory asthma process because they affect the expression of genes and chemokines involved in the immune response. Consistently, PARP inhibition achievable either upon genetic ablation or by using pharmacological agents has shown a range of therapeutic effects against the disease. Indeed, in the last two decades, several preclinical studies highlighted the protective effects of PARP inhibition in various animal models of asthma. PARP inhibitors showed the ability to reduce the overall lung inflammation acting with a specific effect on immune cell recruitment and through the modulation of asthma-associated cytokines production. PARP inhibition has been shown to affect the Th1-Th2 balance and, at least in some aspects, the airway remodeling. In this review, we summarize and discuss the steps that led PARP inhibition to become a possible future therapeutic strategy against allergic asthma.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 25 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 25 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 5 20%
Researcher 3 12%
Student > Ph. D. Student 3 12%
Other 2 8%
Student > Doctoral Student 2 8%
Other 4 16%
Unknown 6 24%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 7 28%
Medicine and Dentistry 3 12%
Agricultural and Biological Sciences 2 8%
Pharmacology, Toxicology and Pharmaceutical Science 1 4%
Unspecified 1 4%
Other 3 12%
Unknown 8 32%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 7. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 04 July 2023.
All research outputs
#4,838,109
of 25,382,440 outputs
Outputs from Drug Design, Development and Therapy
#304
of 2,268 outputs
Outputs of similar age
#99,702
of 448,849 outputs
Outputs of similar age from Drug Design, Development and Therapy
#9
of 42 outputs
Altmetric has tracked 25,382,440 research outputs across all sources so far. Compared to these this one has done well and is in the 79th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 2,268 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 7.1. This one has done well, scoring higher than 85% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 448,849 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 76% of its contemporaries.
We're also able to compare this research output to 42 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 73% of its contemporaries.