↓ Skip to main content

Dove Medical Press

Dynamin-related protein 1 is involved in micheliolide-induced breast cancer cell death

Overview of attention for article published in OncoTargets and therapy, November 2015
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
1 X user
facebook
1 Facebook page

Citations

dimensions_citation
20 Dimensions

Readers on

mendeley
7 Mendeley
Title
Dynamin-related protein 1 is involved in micheliolide-induced breast cancer cell death
Published in
OncoTargets and therapy, November 2015
DOI 10.2147/ott.s91805
Pubmed ID
Authors

Yongsheng Jia, Liyan Zhou, Chen Tian, Yehui Shi, Chen Wang, Zhongsheng Tong

Abstract

Dynamin-related protein 1 (Drp1) is a newly discovered therapeutic target for tumor initiation, migration, proliferation, and chemosensitivity. Thus, therapeutic strategies that focus on targeting Drp1 and its related signaling pathway pave a new way to address the ineffectiveness of traditional cancer therapies. Micheliolide (MCL), a guaianolide sesquiterpene lactone, can selectively eradicate acute myeloid leukemia stem or progenitor cells. But the effect of MCL on the mitochondrial dynamics of cancer cells is still not well demonstrated. In this study, we show that MCL inhibited the growth of MCF-7 human breast cancer cells, accompanied by increased mitochondrial fission and upregulation of Drp1. The results obtained from overexpression experiments of wild or dominant-negative mutant type of Drp1 demonstrate that Drp1 is both necessary and sufficient to induce MDA-MB-231 and MCF-7 cell death. Furthermore, mitochondrial membrane potential decreased, whereas reactive oxygen species (ROS) generation, cytochrome c release, and PARP cleavage were enhanced after overexpression of Drp1 wild type. On the other hand, overexpression of Drp1-K38A (a dominant-negative mutant of Drp1) rescued cells from increased apoptosis, confirming the role of MCL-induced Drp1 in the observed apoptosis. Finally, MCL-induced Drp1-mediated cell death could be reversed by N-acetyl-L-cysteine (the ROS scavenger) in breast cancer cells. Taken together, the present study shows a novel role for Drp1 in MCL-induced breast cancer cell death, potentially through regulation of ROS-mitochondrial apoptotic pathway.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 7 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 1 14%
Unknown 6 86%

Demographic breakdown

Readers by professional status Count As %
Student > Doctoral Student 2 29%
Researcher 1 14%
Other 1 14%
Student > Master 1 14%
Unknown 2 29%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 2 29%
Immunology and Microbiology 1 14%
Chemistry 1 14%
Medicine and Dentistry 1 14%
Unknown 2 29%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 02 December 2015.
All research outputs
#20,655,488
of 25,373,627 outputs
Outputs from OncoTargets and therapy
#1,597
of 3,016 outputs
Outputs of similar age
#215,829
of 294,808 outputs
Outputs of similar age from OncoTargets and therapy
#53
of 104 outputs
Altmetric has tracked 25,373,627 research outputs across all sources so far. This one is in the 10th percentile – i.e., 10% of other outputs scored the same or lower than it.
So far Altmetric has tracked 3,016 research outputs from this source. They receive a mean Attention Score of 2.9. This one is in the 31st percentile – i.e., 31% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 294,808 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 14th percentile – i.e., 14% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 104 others from the same source and published within six weeks on either side of this one. This one is in the 34th percentile – i.e., 34% of its contemporaries scored the same or lower than it.