↓ Skip to main content

Dove Medical Press

Causative factors for formation of toxic islet amyloid polypeptide oligomer in type 2 diabetes mellitus

Overview of attention for article published in Clinical Interventions in Aging, November 2015
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (90th percentile)
  • High Attention Score compared to outputs of the same age and source (91st percentile)

Mentioned by

news
2 news outlets
twitter
1 X user

Readers on

mendeley
72 Mendeley
Title
Causative factors for formation of toxic islet amyloid polypeptide oligomer in type 2 diabetes mellitus
Published in
Clinical Interventions in Aging, November 2015
DOI 10.2147/cia.s95297
Pubmed ID
Authors

Hye Rin Jeong, Seong Soo A An

Abstract

Human islet amyloid polypeptide (h-IAPP) is a peptide hormone that is synthesized and cosecreted with insulin from insulin-secreting pancreatic β-cells. Recently, h-IAPP was proposed to be the main component responsible for the cytotoxic pancreatic amyloid deposits in patients with type 2 diabetes mellitus (T2DM). Since the causative factors of IAPP (or amylin) oligomer aggregation are not fully understood, this review will discuss the various forms of h-IAPP aggregation. Not all forms of IAPP aggregates trigger the destruction of β-cell function and loss of β-cell mass; however, toxic oligomers do trigger these events. Once these toxic oligomers form under abnormal metabolic conditions in T2DM, they can lead to cell disruption by inducing cell membrane destabilization. In this review, the various factors that have been shown to induce toxic IAPP oligomer formation will be presented, as well as the potential mechanism of oligomer and fibril formation from pro-IAPPs. Initially, pro-IAPPs undergo enzymatic reactions to produce the IAPP monomers, which can then develop into oligomers and fibrils. By this mechanism, toxic oligomers could be generated by diverse pathway components. Thus, the interconnections between factors that influence amyloid aggregation (eg, absence of PC2 enzyme, deamidation, reduction of disulfide bonds, environmental factors in the cell, genetic mutations, copper metal ions, and heparin) will be presented. Hence, this review will aid in understanding the fundamental causative factors contributing to IAPP oligomer formation and support studies for investigating novel T2DM therapeutic approaches, such as the development of inhibitory agents for preventing oligomerization at the early stages of diabetic pathology.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 72 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 72 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 15 21%
Student > Ph. D. Student 12 17%
Student > Master 12 17%
Researcher 7 10%
Student > Doctoral Student 5 7%
Other 8 11%
Unknown 13 18%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 17 24%
Medicine and Dentistry 12 17%
Chemistry 8 11%
Agricultural and Biological Sciences 8 11%
Chemical Engineering 3 4%
Other 9 13%
Unknown 15 21%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 18. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 08 August 2017.
All research outputs
#2,063,250
of 25,374,917 outputs
Outputs from Clinical Interventions in Aging
#225
of 1,968 outputs
Outputs of similar age
#29,243
of 294,812 outputs
Outputs of similar age from Clinical Interventions in Aging
#4
of 49 outputs
Altmetric has tracked 25,374,917 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 91st percentile: it's in the top 10% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 1,968 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 11.1. This one has done well, scoring higher than 88% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 294,812 tracked outputs that were published within six weeks on either side of this one in any source. This one has done particularly well, scoring higher than 90% of its contemporaries.
We're also able to compare this research output to 49 others from the same source and published within six weeks on either side of this one. This one has done particularly well, scoring higher than 91% of its contemporaries.