↓ Skip to main content

Dove Medical Press

MicroRNA-125a-5p modulates human cervical carcinoma proliferation and migration by targeting ABL2

Overview of attention for article published in Drug Design, Development and Therapy, December 2015
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Above-average Attention Score compared to outputs of the same age and source (51st percentile)

Mentioned by

twitter
1 X user
googleplus
1 Google+ user

Citations

dimensions_citation
49 Dimensions

Readers on

mendeley
16 Mendeley
Title
MicroRNA-125a-5p modulates human cervical carcinoma proliferation and migration by targeting ABL2
Published in
Drug Design, Development and Therapy, December 2015
DOI 10.2147/dddt.s93104
Pubmed ID
Authors

Xian Qin, Yajun Wan, Saiying Wang, Min Xue

Abstract

In this study, we intended to understand the regulatory mechanisms of microRNA-125a-5p (miR-125a-5p) in human cervical carcinoma. The gene expressions of miR-125a-5p in seven cervical carcinoma cell lines and 12 human cervical carcinoma samples were evaluated by quantitative real-time reverse transcription polymerase chain reaction. Ca-Ski and HeLa cells were transduced with lentivirus carrying miR-125a-5p mimics, and the effects of lentivirus-induced miR-125a-5p upregulation on cervical carcinoma proliferation and migration were examined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and transwell assays, respectively. In additional, HeLa cells were inoculated into null mice to evaluate the effect of miR-125a-5p upregulation on in vivo cervical carcinoma growth. The direct regulation of miR-125a-5p on its target gene, ABL proto-oncogene 2 (ABL2), in cervical carcinoma was evaluated by quantitative real-time reverse transcription polymerase chain reaction, Western blotting and luciferase reporter assays, respectively. ABL2 was then downregulated by small interfering RNA to examine its effect on cervical carcinoma proliferation and migration. miR-125a-5p was downregulated in both cervical carcinoma cell lines and human cervical carcinomas. In Ca-Ski and HeLa cells, lentivirus-mediated miR-125a-5p upregulation inhibited cancer proliferation and migration in vitro and cervical carcinoma transplantation in vivo. ABL2 was shown to be directly targeted by miR-125a-5p. In cervical carcinoma, ABL2 gene and protein levels were both downregulated by miR-125a-5p. Small interfering RNA-mediated ABL2 downregulation also had tumor-suppressive effects on cervical carcinoma proliferation and migration. The molecular pathway of miR-125a-5p/ABL2 plays an important role in human cervical carcinoma. Targeting miR-125a-5p/ABL2 pathway may provide a new treatment strategy for patients with cervical carcinoma.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 16 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 16 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 5 31%
Student > Bachelor 3 19%
Student > Master 2 13%
Other 1 6%
Student > Doctoral Student 1 6%
Other 1 6%
Unknown 3 19%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 6 38%
Medicine and Dentistry 3 19%
Veterinary Science and Veterinary Medicine 1 6%
Agricultural and Biological Sciences 1 6%
Materials Science 1 6%
Other 0 0%
Unknown 4 25%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 15 January 2016.
All research outputs
#16,048,009
of 25,374,647 outputs
Outputs from Drug Design, Development and Therapy
#925
of 2,268 outputs
Outputs of similar age
#215,774
of 395,421 outputs
Outputs of similar age from Drug Design, Development and Therapy
#42
of 94 outputs
Altmetric has tracked 25,374,647 research outputs across all sources so far. This one is in the 34th percentile – i.e., 34% of other outputs scored the same or lower than it.
So far Altmetric has tracked 2,268 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 7.1. This one has gotten more attention than average, scoring higher than 55% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 395,421 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 42nd percentile – i.e., 42% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 94 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 51% of its contemporaries.