↓ Skip to main content

Dove Medical Press

Article Metrics

UV photofunctionalization promotes nano-biomimetic apatite deposition on titanium

Overview of attention for article published in International Journal of Nanomedicine, January 2016
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age

Mentioned by

twitter
3 tweeters

Citations

dimensions_citation
12 Dimensions

Readers on

mendeley
29 Mendeley
Title
UV photofunctionalization promotes nano-biomimetic apatite deposition on titanium
Published in
International Journal of Nanomedicine, January 2016
DOI 10.2147/ijn.s95249
Pubmed ID
Authors

Takahiro Ogawa, Makiko Saita, Takayuki Ikeda, Masahiro Yamada, Katsuhiko Kimoto, Masaichi Lee

Abstract

Although biomimetic apatite coating is a promising way to provide titanium with osteoconductivity, the efficiency and quality of deposition is often poor. Most titanium implants have microscale surface morphology, and an addition of nanoscale features while preserving the micromorphology may provide further biological benefit. Here, we examined the effect of ultraviolet (UV) light treatment of titanium, or photofunctionalization, on the efficacy of biomimetic apatite deposition on titanium and its biological capability. Micro-roughed titanium disks were prepared by acid-etching with sulfuric acid. Micro-roughened disks with or without photofunctionalization (20-minute exposure to UV light) were immersed in simulated body fluid (SBF) for 1 or 5 days. Photofunctionalized titanium disks were superhydrophilic and did not form surface air bubbles when immersed in SBF, whereas non-photofunctionalized disks were hydrophobic and largely covered with air bubbles during immersion. An apatite-related signal was observed by X-ray diffraction on photofunctionalized titanium after 1 day of SBF immersion, which was equivalent to the one observed after 5 days of immersion of control titanium. Scanning electron microscopy revealed nodular apatite deposition in the valleys and at the inclines of micro-roughened structures without affecting the existing micro-configuration. Micro-roughened titanium and apatite-deposited titanium surfaces had similar roughness values. The attachment, spreading, settling, proliferation, and alkaline phosphate activity of bone marrow-derived osteoblasts were promoted on apatite-coated titanium with photofunctionalization. UV-photofunctionalization of titanium enabled faster deposition of nanoscale biomimetic apatite, resulting in the improved biological capability compared to the similarly prepared apatite-deposited titanium without photofunctionalization. Photofunctionalization-assisted biomimetic apatite deposition may be a novel method to effectively enhance micro-roughened titanium surfaces without altering their microscale morphology.

Twitter Demographics

The data shown below were collected from the profiles of 3 tweeters who shared this research output. Click here to find out more about how the information was compiled.

Mendeley readers

The data shown below were compiled from readership statistics for 29 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 29 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 6 21%
Student > Ph. D. Student 5 17%
Researcher 3 10%
Student > Master 3 10%
Student > Doctoral Student 2 7%
Other 5 17%
Unknown 5 17%
Readers by discipline Count As %
Medicine and Dentistry 8 28%
Materials Science 6 21%
Engineering 5 17%
Chemistry 2 7%
Nursing and Health Professions 1 3%
Other 1 3%
Unknown 6 21%

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 13 January 2016.
All research outputs
#5,211,859
of 9,728,130 outputs
Outputs from International Journal of Nanomedicine
#832
of 2,077 outputs
Outputs of similar age
#160,082
of 330,782 outputs
Outputs of similar age from International Journal of Nanomedicine
#50
of 78 outputs
Altmetric has tracked 9,728,130 research outputs across all sources so far. This one is in the 43rd percentile – i.e., 43% of other outputs scored the same or lower than it.
So far Altmetric has tracked 2,077 research outputs from this source. They receive a mean Attention Score of 2.9. This one is in the 43rd percentile – i.e., 43% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 330,782 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 47th percentile – i.e., 47% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 78 others from the same source and published within six weeks on either side of this one. This one is in the 24th percentile – i.e., 24% of its contemporaries scored the same or lower than it.