↓ Skip to main content

Dove Medical Press

Nanodiamonds coupled with 5,7-dimethoxycoumarin, a plant bioactive metabolite, interfere with the mitotic process in B16F10 cells altering the actin organization

Overview of attention for article published in International Journal of Nanomedicine, February 2016
Altmetric Badge

About this Attention Score

  • Above-average Attention Score compared to outputs of the same age (51st percentile)
  • Good Attention Score compared to outputs of the same age and source (72nd percentile)

Mentioned by

twitter
5 X users

Citations

dimensions_citation
33 Dimensions

Readers on

mendeley
28 Mendeley
Title
Nanodiamonds coupled with 5,7-dimethoxycoumarin, a plant bioactive metabolite, interfere with the mitotic process in B16F10 cells altering the actin organization
Published in
International Journal of Nanomedicine, February 2016
DOI 10.2147/ijn.s96614
Pubmed ID
Authors

Angelo Gismondi, Valentina Nanni, Giacomo Reina, Silvia Orlanducci, Maria Letizia Terranova, Antonella Canini

Abstract

For the first time, we coupled reduced detonation nanodiamonds (NDs) with a plant secondary metabolite, citropten (5,7-dimethoxycoumarin), and demonstrated how this complex was able to reduce B16F10 tumor cell growth more effectively than treatment with the pure molecule. These results encouraged us to find out the specific mechanism underlying this phenomenon. Internalization kinetics and quantification of citropten in cells after treatment with its pure or ND-conjugated form were measured, and it was revealed that the coupling between NDs and citropten was essential for the biological properties of the complex. We showed that the adduct was not able to induce apoptosis, senescence, or differentiation, but it determined cell cycle arrest, morphological changes, and alteration of mRNA levels of the cytoskeletal-related genes. The identification of metaphasic nuclei and irregular disposition of β-actin in the cell cytoplasm supported the hypothesis that citropten conjugated with NDs showed antimitotic properties in B16F10 cells. This work can be considered a pioneering piece of research that could promote and support the biomedical use of plant drug-functionalized NDs in cancer therapy.

X Demographics

X Demographics

The data shown below were collected from the profiles of 5 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 28 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 28 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 5 18%
Student > Ph. D. Student 4 14%
Student > Master 3 11%
Researcher 3 11%
Professor 2 7%
Other 4 14%
Unknown 7 25%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 5 18%
Chemistry 5 18%
Medicine and Dentistry 3 11%
Pharmacology, Toxicology and Pharmaceutical Science 2 7%
Agricultural and Biological Sciences 2 7%
Other 5 18%
Unknown 6 21%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 3. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 08 September 2016.
All research outputs
#14,600,553
of 25,374,647 outputs
Outputs from International Journal of Nanomedicine
#1,525
of 4,123 outputs
Outputs of similar age
#195,931
of 406,424 outputs
Outputs of similar age from International Journal of Nanomedicine
#22
of 86 outputs
Altmetric has tracked 25,374,647 research outputs across all sources so far. This one is in the 41st percentile – i.e., 41% of other outputs scored the same or lower than it.
So far Altmetric has tracked 4,123 research outputs from this source. They receive a mean Attention Score of 4.7. This one has gotten more attention than average, scoring higher than 61% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 406,424 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 51% of its contemporaries.
We're also able to compare this research output to 86 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 72% of its contemporaries.