↓ Skip to main content

Dove Medical Press

Engineered metal nanoparticles in the sub-nanomolar levels kill cancer cells

Overview of attention for article published in International Journal of Nanomedicine, April 2016
Altmetric Badge

About this Attention Score

  • Good Attention Score compared to outputs of the same age (71st percentile)
  • High Attention Score compared to outputs of the same age and source (84th percentile)

Mentioned by

twitter
4 X users
patent
1 patent

Citations

dimensions_citation
16 Dimensions

Readers on

mendeley
24 Mendeley
Title
Engineered metal nanoparticles in the sub-nanomolar levels kill cancer cells
Published in
International Journal of Nanomedicine, April 2016
DOI 10.2147/ijn.s101463
Pubmed ID
Authors

Vitaly Vodyanoy, Yasmine Daniels, Oleg Pustovyy, William A MacCrehan, Shin Muramoto, Gheorghe Stan

Abstract

Small metal nanoparticles obtained from animal blood were observed to be toxic to cultured cancer cells, whereas noncancerous cells were much less affected. In this work, engineered zinc and copper metal nanoparticles were produced from bulk metal rods by an underwater high-voltage discharge method. The metal nanoparticles were characterized by atomic force microscopy and X-ray photoelectron spectroscopy. The metal nanoparticles, with estimated diameters of 1 nm-2 nm, were determined to be more than 85% nonoxidized. A cell viability assay and high-resolution light microscopy showed that exposure of RG2, cultured rat brain glioma cancer cells, to the zinc and copper nanoparticles resulted in cell morphological changes, including decreased cell adherence, shrinking/rounding, nuclear condensation, and budding from cell bodies. The metal-induced cell injuries were similar to the effects of staurosporine, an active apoptotic reagent. The viability experiments conducted for zinc and copper yielded values of dissociation constants of 0.22±0.08 nmol/L (standard error [SE]) and 0.12±0.02 nmol/L (SE), respectively. The noncancerous astrocytes were not affected at the same conditions. Because metal nanoparticles were lethal to the cancer cells at sub-nanomolar concentrations, they are potentially important as nanomedicine. Lethal concentrations of synthetic metal nanoparticles reported in the literature are a few orders of magnitude higher than the natural, blood-isolated metal nanoparticles; therefore, in this work, engineered metal nanoparticles were examined to mimic the properties of endogenous metal nanoparticles. RG2, rat brain glioma cells CTX TNA2 brain rat astrocytes, obtained from the American Type Culture Collection, high-voltage discharge, atomic force microscope, X-ray photoelectron spectroscopy, high-resolution light microscopy, zeta potential measurements, and 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay were used in this work. Engineered zinc and copper metal nanoparticles of size 1 nm-2 nm were lethal to cultured RG2 glioma cancer cells. Cell death was confirmed by MTT assay, showing that the relative viability of RG2 glioma cells is reduced in a dose-dependent manner at sub-nanomolar concentrations of the nanoparticles. The noncancerous astrocytes were not affected at the same conditions. The engineered and characterized zinc and copper nanoparticles are potentially significant as biomedicine.

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 24 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 24 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 5 21%
Researcher 4 17%
Student > Ph. D. Student 4 17%
Student > Doctoral Student 3 13%
Other 1 4%
Other 3 13%
Unknown 4 17%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 5 21%
Chemistry 4 17%
Agricultural and Biological Sciences 4 17%
Medicine and Dentistry 3 13%
Arts and Humanities 1 4%
Other 2 8%
Unknown 5 21%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 5. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 20 October 2020.
All research outputs
#6,753,656
of 25,373,627 outputs
Outputs from International Journal of Nanomedicine
#697
of 4,123 outputs
Outputs of similar age
#89,553
of 314,719 outputs
Outputs of similar age from International Journal of Nanomedicine
#18
of 119 outputs
Altmetric has tracked 25,373,627 research outputs across all sources so far. This one has received more attention than most of these and is in the 73rd percentile.
So far Altmetric has tracked 4,123 research outputs from this source. They receive a mean Attention Score of 4.7. This one has done well, scoring higher than 82% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 314,719 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 71% of its contemporaries.
We're also able to compare this research output to 119 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 84% of its contemporaries.