↓ Skip to main content

Dove Medical Press

Metabolic fate of poly-(lactic-co-glycolic acid)-based curcumin nanoparticles following oral administration

Overview of attention for article published in International Journal of Nanomedicine, June 2016
Altmetric Badge

Mentioned by

twitter
2 X users

Citations

dimensions_citation
24 Dimensions

Readers on

mendeley
35 Mendeley
Title
Metabolic fate of poly-(lactic-co-glycolic acid)-based curcumin nanoparticles following oral administration
Published in
International Journal of Nanomedicine, June 2016
DOI 10.2147/ijn.s107442
Pubmed ID
Authors

Takahiro Harigae, Kiyotaka Nakagawa, Taiki Miyazawa, Nao Inoue, Fumiko Kimura, Ikuo Ikeda, Teruo Miyazawa

Abstract

Curcumin (CUR), the main polyphenol in turmeric, is poorly absorbed and rapidly metabolized following oral administration, which severely curtails its bioavailability. Poly-(lactic-co-glycolic acid)-based CUR nanoparticles (CUR-NP) have recently been suggested to improve CUR bioavailability, but this has not been fully verified. Specifically, no data are available about curcumin glucuronide (CURG), the major metabolite of CUR found in the plasma following oral administration of CUR-NP. Herein, we investigated the absorption and metabolism of CUR-NP and evaluated whether CUR-NP improves CUR bioavailability. Following oral administration of CUR-NP in rats, we analyzed the plasma and organ distribution of CUR and its metabolites using high-performance liquid chromatography-tandem mass spectrometry. To elucidate the mechanism of increased intestinal absorption of CUR-NP, we prepared mixed micelles comprised of phosphatidylcholine and bile salts and examined the micellar solubility of CUR-NP. Additionally, we investigated the cellular incorporation of the resultant micelles into differentiated Caco-2 human intestinal cells. Following in vivo administration of CUR-NP, CUR was effectively absorbed and present mainly as CURG in the plasma which contained significant amounts of the metabolite compared with other organs. Thus, CUR-NP increased intestinal absorption of CUR rather than decreasing metabolic degradation and conversion to other metabolites. In vitro, CUR encapsulated in CUR-NP was solubilized in mixed micelles; however, whether the micelles contained CUR or CUR-NP had little influence on cellular uptake efficiency. Therefore, we suggest that the high solubilization capacity of CUR-NP in mixed micelles, rather than cellular uptake efficiency, explains the high intestinal absorption of CUR-NP in vivo. These findings provide a better understanding of the bioavailability of CUR and CUR-NP following oral administration. To improve the bioavailability of CUR, future studies should focus on enhancing the resistance to metabolic degradation and conversion of CUR to other metabolites, which may lead to novel discoveries regarding food function and disease prevention.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 35 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 35 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 5 14%
Researcher 4 11%
Student > Bachelor 4 11%
Other 3 9%
Student > Ph. D. Student 3 9%
Other 5 14%
Unknown 11 31%
Readers by discipline Count As %
Pharmacology, Toxicology and Pharmaceutical Science 8 23%
Agricultural and Biological Sciences 5 14%
Medicine and Dentistry 3 9%
Chemical Engineering 2 6%
Chemistry 2 6%
Other 4 11%
Unknown 11 31%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 29 June 2016.
All research outputs
#17,286,645
of 25,374,917 outputs
Outputs from International Journal of Nanomedicine
#2,470
of 4,123 outputs
Outputs of similar age
#225,314
of 353,658 outputs
Outputs of similar age from International Journal of Nanomedicine
#98
of 123 outputs
Altmetric has tracked 25,374,917 research outputs across all sources so far. This one is in the 21st percentile – i.e., 21% of other outputs scored the same or lower than it.
So far Altmetric has tracked 4,123 research outputs from this source. They receive a mean Attention Score of 4.7. This one is in the 28th percentile – i.e., 28% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 353,658 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 28th percentile – i.e., 28% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 123 others from the same source and published within six weeks on either side of this one. This one is in the 7th percentile – i.e., 7% of its contemporaries scored the same or lower than it.